

A Multidisciplinary Analysis Approach for the Cygnus Cargo Resupply to ISS

Virgil Hutchinson, Jr. Orbital ATK Space Systems Group Dulles, VA

Unlocking the Potential of MBSE with ModelCenter Thursday, July 27, 2017 Alexandria, VA

Orbital ATK Overview

Aerospace Systems Defense Systems

Innovation... Delivered

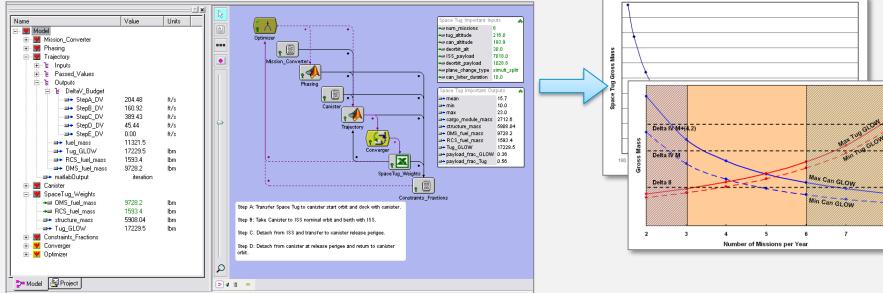
- Global Aerospace and Defense Systems Company Established by Merger of Orbital and Alliant Techsystems in 2015
- Leading Developer and Manufacturer of Innovative, Reliable and Affordable Products for Government and Commercial Customers
 - Launch Vehicles, Rocket Propulsion Systems and Aerospace Structures
 - Tactical Missile Products, Armament Systems and Ammunition
 - Satellites, Space Components and Technical Services
- More Than 13,000 Employees, Including About 4,200 Engineers and Scientists

Flight Systems Group

Defense Systems Group

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved

Space Systems Group

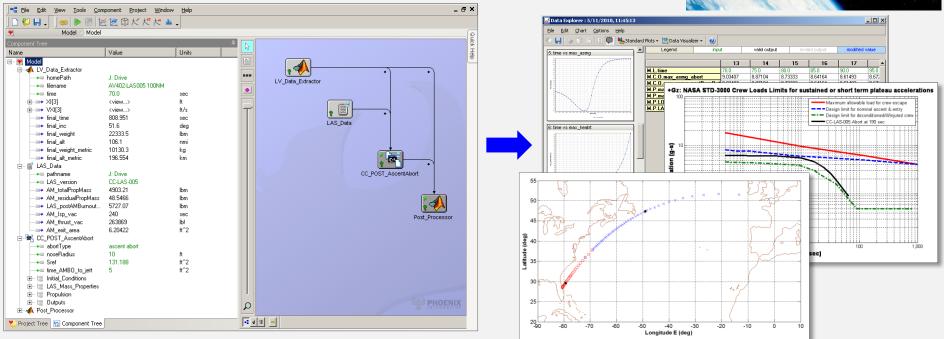

"A standardized and robust modeling language is considered a critical enabler for MBSE. The Systems Modeling Language (OMG SysML[™]) is one such general purpose modeling language ..." - A Practical Guide to SysML, 2012

- MBSE \neq SysML
 - SysML Is NOT a methodology or tool; it is a language that is tool/methodology-independent
 - SysML Is NOT meant to replace modeling investments in other engineering disciplines
 - SysML IS designed to *support* MBSE, but MBSE does not *require* SysML
- Orbital ATK has significant MBSE experience developing integrated analysis models to explore & evaluate large design space, generate robust designs, & integrate/automate complex analyses
- SSG has extensive experience performing multi-disciplinary analyses using Phoenix Integration ModelCenter®
 - Integrate & automate analysis models across different software programs & platforms
 - Optimize design with many optimization methods
 - Explore design space sensitivity w/ parametric trade studies & Design of Experiment tools
 - Assess/verify design robustness with probabilistic analysis tools (Monte Carlos)
- Many programs have used ModelCenter (Orion, Antares, CRS, Heavy Lift Study, ...)

ICCS/COTS Proposal (2005-2006)

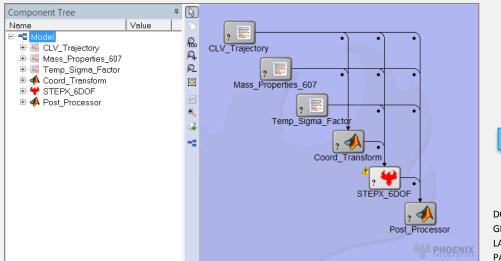
Integrated Visiting Vehicle sizing & mission analysis to support ICCS/COTS proposal

- Architecture study focused on developing spacecraft that maximizes on-orbit missions capabilities without exceeding existing launch vehicle payload constraints
- Parametric trade studies conducted to explore sensitivity of Space Tug mass to variation in payload mass, number of missions, and CONOPS
- Convergence/optimization of spacecraft design gross mass between FSG + SSG trajectory tools (MATLAB) & SSG spacecraft sizing tools (MS Excel)

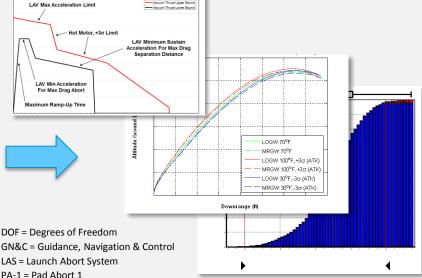

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved

Orbital ATK

CCDev2 Proposal (2010)

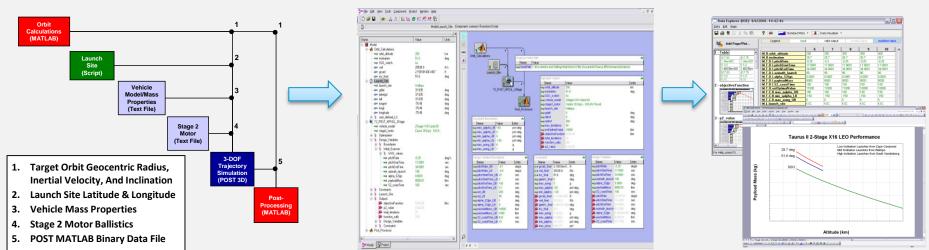


- Discipline tools integrated in ModelCenter for analysis of Abort Black-Out Zones
 - ➢ Abort initial conditions extracted from LV trajectory MATLAB data file
 - LAS mass properties & abort motor propulsion data extracted from spreadsheet
 - ➤ Initial conditions, masses, and propulsion data passed to POST 3-DOF
 - POST 3-DOF trajectory data post-processed to generate crew load limits & abort instantaneous impact points using MATLAB
- Parametric Trade Study: Performed abort simulation at intervals of LV trajectory
- Post-abort accelerations compared to NASA STD-3000 crew load limits



Orion LAS PA-1 Validation/Verification (2006-2008) Orbital ATK

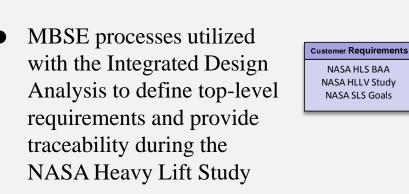
- PA-1 flight test integrated mission analysis conducted in ModelCenter
 - Rapid turnaround customer-requested analyses
 - Optimization of abort motor thrust profile
 - Perform GN&C 6-DOF trajectory analysis for configuration, initial conditions, and motors performance variations
- Validation & verification of performance requirements with Monte Carlo analysis within ModelCenter
- Analysis traceability back to requirements database (Cradle via Excel)



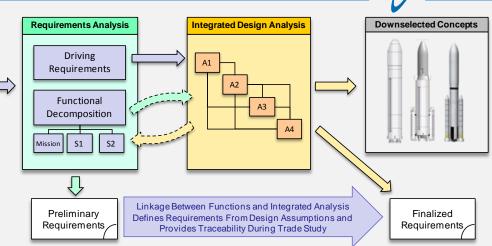
Antares Performance Analysis (2008-2010)

- Antares Payload Performance conducted in ModelCenter collaborative environment
 - Integrated analysis model automatically updates and evaluates POST 3DOF trajectory for changes in mass properties, upper stage motor ballistics, launch site, & target orbit
- ModelCenter parametric trade study tools conducted payload performance analysis autonomously based on matrix of input values & switches
 - Parametric trade studies were conducted to explore sensitivity of payload performance to variation in orbit altitude, inclination, and launch site

Antares Performance Design Structure Matrix


Antares Performance ModelCenter Model


Performance Analysis Results


NASA Heavy Lift & Propulsion Systems Analysis & Trade Study (2010-2011)

NASA HLS BAA NASA HLLV Study

NASA SLS Goals

Orbital ATK

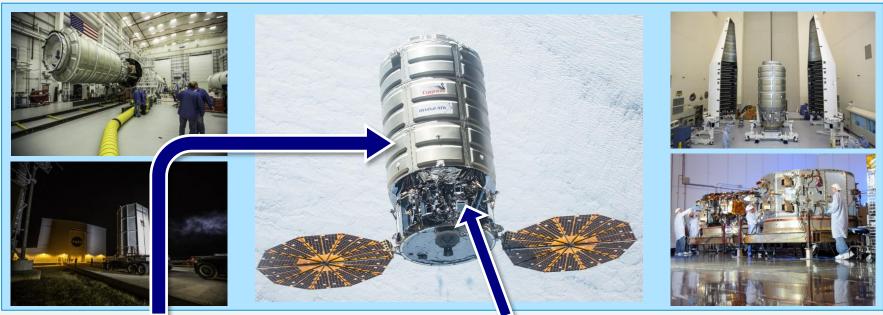
- Orbital ATK's Integrated Systems Analysis Model within ModelCenter® Collaborative **Design Environment**
 - Model provides data transfer between tools & system-level MDO, and enforces constraints
 - Facilitated MBSE linkage between the integrated analysis and design requirements
- Preliminary reliability and cost analyses performed outside integrated model

"A Multidisciplinary Approach to the Heavy Lift System Architecture Study," AIAA 2013-5373

HLLV = Heavy Lift Launch Vehicle HLS = Heavy Lift System

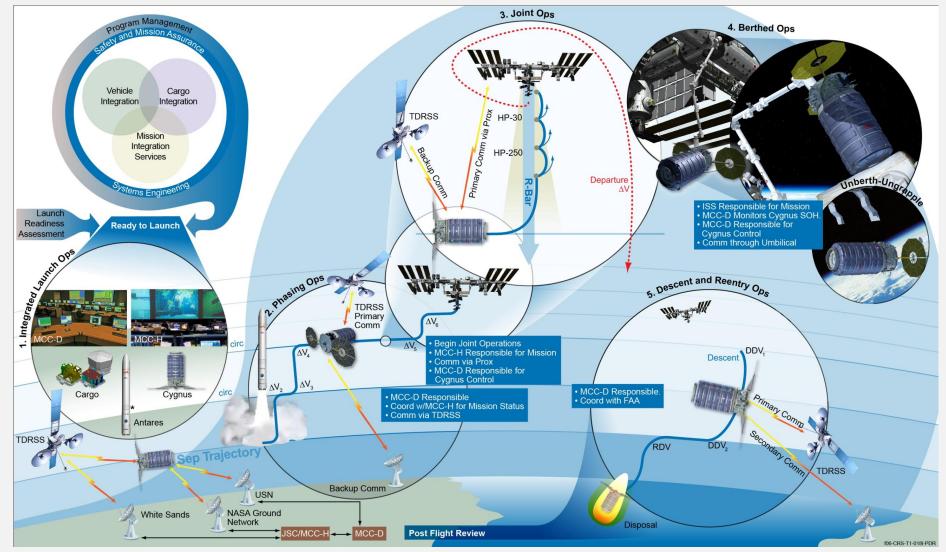
BAA = Broad Agency Announcement MBSE = Model-Based Systems Engineering MDO = Multi-Disciplinary Optimization SLS = Space Launch System

ISS Cargo Resupply with Orbital ATK Cygnus



Cygnus Spacecraft Overview

Cygnus consists of two modules: Service Module & Pressurized Cargo Module


- Pressurized Cargo Module (PCM)
 - Heritage: Multi-Purpose Logistics Module
 - Produced by Thales Alenia Space
 - Total Cargo Mass: 3,200 3,500 kg
 - Pressurized Volume: 26.2 m³
 - Berthing at ISS: Node 2 Common Berthing Mechanism (CBM)

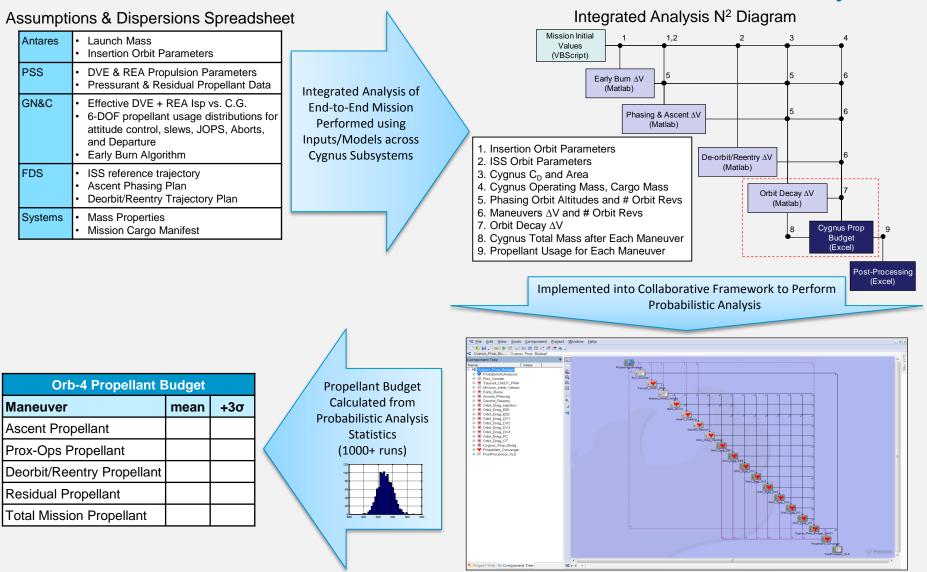
• Service Module (SM)

- Heritage: Orbital ATK Flight Proven GEOStarTM & LEOStarTM satellites
- Power Generation: 2 Fixed Wing Solar Arrays, ZTJ GaAs cells
- Power Output: 3.5 kW (sun-pointed)
- Propellant: Dual-mode N₂H₄/MON-3 or N₂H₄

Cygnus ISS Resupply Mission Overview

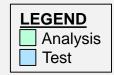
*OA-4, OA-6, and OA-7 Mission Launches on Atlas V

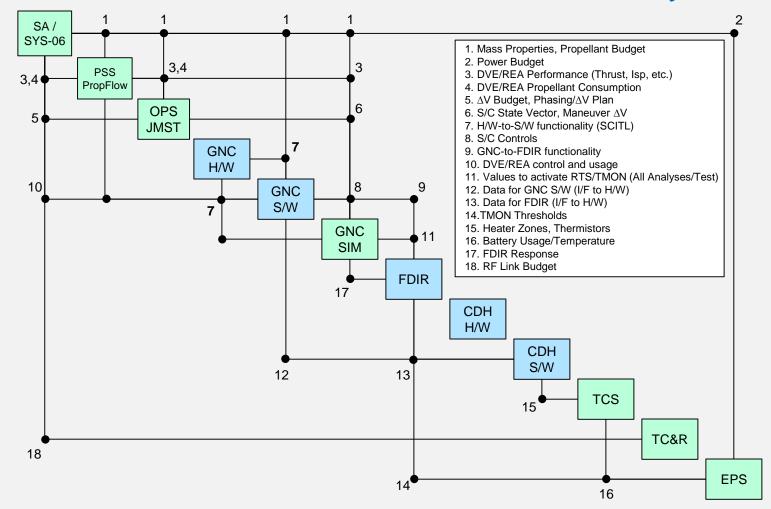
Motivation


- CRS Performance Enhancement with Mission Optimization
 - Mission optimization opportunities selected to improve cargo performance & minimize mission impact
 - > Opportunity: Improved propellant consumption analysis & provide statistical estimation for total mission
 - Increase fidelity of analyses for further system/subsystem developments & improvements
 - Improve tool/process to easily generate statistical data to validate propellant usage during the mission
 - End Goal: Provide statistical impact of each $+3\sigma$ propellant budget line item on total mission propellant
- Develop process to integrate subsystem discipline tools for accurate mission propellant usage estimation
 > Integrate existing discipline tools: Flight Dynamics, Propulsion, GN&C, & Systems
 - > Enable rapid turn around of analyses for changing mission design, cargo accommodations & spacecraft configuration
 - Support significant reuse: enable increased fidelity without major work; explore propellant impact for contingencies
 - > Perform Robust V&V of propellant load for each mission; results support propellant loading & ops thresholds

Objective

- Assess Cygnus propellant usage during CRS Mission to validate fuel load & oxidizer load
 Propellant usage calculated for each maneuver during mission
- Calculate propellant usage for each maneuver during CRS mission
- Perform Monte Carlo analysis of propellant budget
 - \blacktriangleright Provide statistics for fuel & oxidizer usage during CRS Mission
 - \succ Compare mission +3 σ vs. sum of maneuver +3 σ propellant usage


Mission Performance Optimization Process



Cygnus Integrated Analysis N² Diagram

Integrated N2 Diagram Identified Interactions & Data Needs for Analyses & Tests

Performance Analysis Assumptions & Dispersions Orbital ATK

• Analysis Assumptions for System, Mission, GN&C, and Propulsion variables

Insertion Absolute Orbit Rev

- Dispersions based on data from GN&C verification analyses and Propulsion analyses & tests
- Assumptions & dispersions reviewed and approved by CRS Program for each mission

Analysis Assumptions (units) ISS Circular Orbit Altitude (km)

- Final Ascent Orbit Altitude (km) Early Burn 1 Δ Orbit Rev Atmospheric Model • Early Burn 1 Absolute Orbit Rev Launch Date EB2 to JTRP Δ Orbit Rev Launch Time JTRP DV Absolute Orbit Rev Target ECI RAAN (deg) • Number of Slews per Maneuver Target Inclination (deg) Number of Slews for Initial Sun-Pointing Insertion Latitude (deg) Aborts Type Abort Racetrack Type Insertion Longitude (deg) Insertion Perigee Altitude (km) • Early Burn Slew Propellant Usage Rate (kg/slew) Insertion Apogee Altitude (km) Mission Slew Propellant Usage Rate (kg/slew) Duration from Insertion to JTRP (days) Deorbit DV1 Burn Δ Orbit Rev Insertion Δ Orbit Rev Deorbit DV2 Burn Δ Orbit Rev
 - Deorbit DV Apogee Altitude (km)

- Deorbit DV1 Perigee Altitude (km)
- Deorbit DV2 Perigee Altitude (km)
- Cygnus Area (m²)
- LV Payload Capability (kg)
- Delivered Cargo Mass (kg)
- Disposal Cargo Mass (kg)
- Cygnus Operating Mass (kg)
- Cygnus Total Propellant Mass (kg)
- Number of Fuel Tanks
- Number of Oxidizer Tanks
- DVE Vacuum Isp (s)
- DVE O/F Ratio
- Number of Contingency Aborts
- Number of Contingency Racetracks

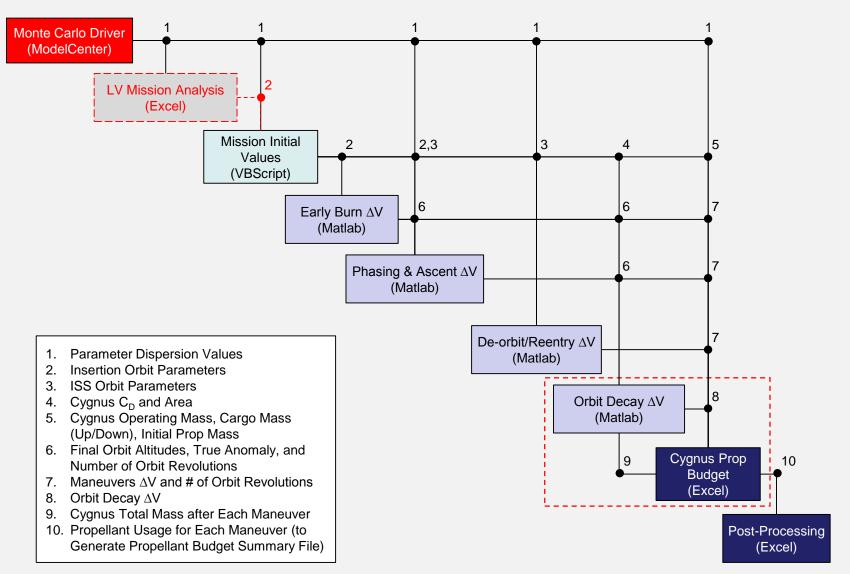
Analysis Dispersions (units) - Distribution

, , ,					
• F10.7 Solar Flux (SFU) - Triangle	• Orbit Trim ΔV (m/s) - Uniform		 JOPS Maneuvers ΔV (m/s) - Normal 		
Geomagnetic Index - Triangle Cygnus Drag Coefficient -		- Uniform	 Racetrack Maneuvers ΔV (m/s) - Normal 		
• ISS Phase Angle (deg) - Uniform • REA Isp (s) - Uniform			• Post-Departure Burn Δ Orbit Rev - Uniform		
• Insertion Inclination (deg) - Triangle • Fuel Residual Mas		- Uniform	 Deorbit Error/Finite Losses ΔV % - Triangle 		
• Insertion ECI RAAN (deg) – Triangle • Oxidizer Residual Mas		(kg) - Uniform	• Ascent DVE + REA Effective lsp - Uniform		
			• Descent DVE + REA Effective Isp - Uniform		
DV = Delta Velocity (ΔV) ECI = Earth-Centered Inertial	JOPS = Joint Operations	O/F = Oxidizer/Fuel			
DVE = Delta Velocity Engine Isp = Specific Impulse	JTRP = Joint Trajectory Reference Point	RAAN: Right Ascension of the Ascending Node			
EB = Early Burn ISS = International Space Station	LV = Launch Vehicle	REA = Reaction Engine Assembly			

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved

- Cygnus propellant budget generated by calculating propellant usage for each maneuver during the CRS mission
 - Maneuvers and mission CONOPS provided by several reference documents listed in analysis assumptions & dispersions
- Propellant usage for ΔV maneuvers calculated using rocket equation

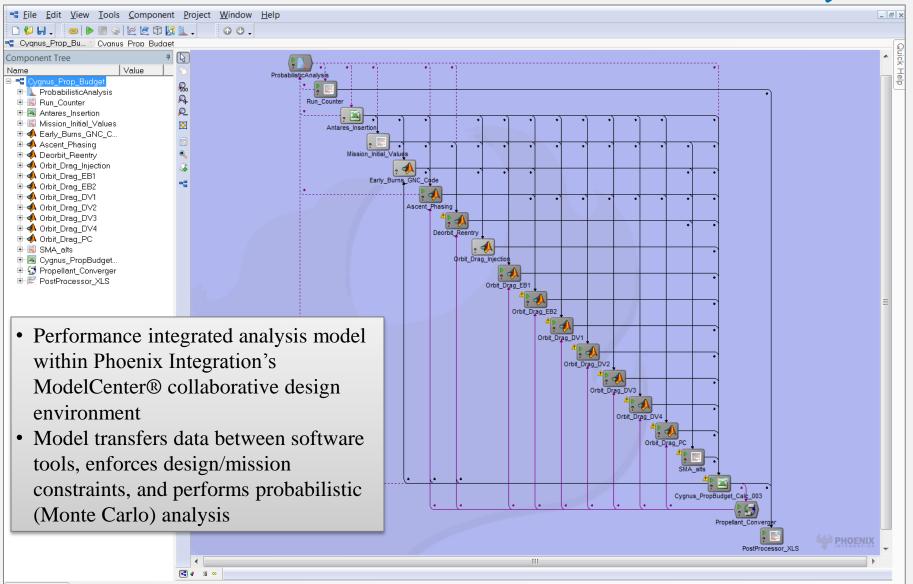
 $\Delta V = I_{sp} g_0 \ln(MR)$, where


 $MR = (m_{prop_used} + m_{prop_remain} + m_{inert} + m_{cargo}) / (m_{cargo} + m_{inert} + m_{prop_remain})$

- > Apse raising/lowering & plane change ΔVs calculated using 2-body orbital mechanics
- ➤ Orbital decay ΔV from atmospheric drag calculated based on MSISE 2000 atmospheric density and number of orbit revolutions
- > JOPS, abort, and racetrack ΔVs provided from analysis documentation
- Attitude control propellant usage calculated based on # of orbit revolutions
- Propellant usage for slews calculated based on #of slews and REA set

REA = Reaction Engine Assembly

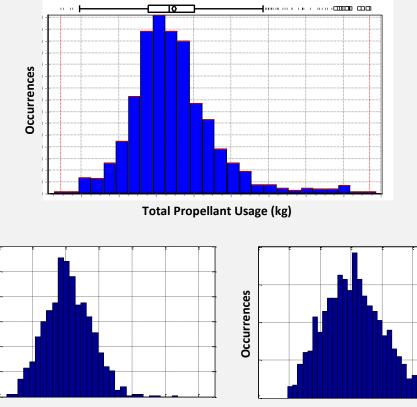
Performance Integrated Analysis N² Diagram



(ModelCenter) budget. Model LV Mission Analysis (Excel)	ICenter Converger Driver converges between orbit decay & propellant mass. Spreadsheet retrieves Cygnus insertion orbit parameters based on LV data run number. Insertion orbit parameters include perigee altitude, apogee altitude, inclination, and ECI RAAN.
	Mission Initial Values (VBScript)Script provides input for ISS orbit parameters, Cygnus vehicle characteristics (CD, area), and Cygnus initial masses at the start of the mission.
	$\begin{array}{ c c c } \hline \textbf{Early Burn } \Delta V \\ \hline \textbf{(Matlab)} \end{array} \qquad \begin{array}{ c c } \textbf{Matlab} & \text{script calculates the required } \Delta V & \text{for each Early} \\ \hline \textbf{Burn maneuver, along with the perigee/apogee altitudes} \\ & \text{and true anomalies of the orbit after each Early Burn.} \end{array}$
	Phasing & Ascent ΔV (Matlab)Matlab script calculates phasing orbit perigee/apogee & # of orbit revs required to transfer from insertion orbit to ISS JTRP for specified duration. Calculates required ΔV for each orbit transfer maneuver.
reentry maneu	calculates required ΔV for each deorbit / Iver, along with the perigee/apogee rue anomalies of the orbit after each burn.
orbiting after each orbit transfer ma	ng from atmospheric drag acting on Cygnus while aneuver. Orbit decay ΔV calculation based on the initial characteristics (mass, area, CD), and # of orbit revs.
Maneuver propellant usage during dispersions for JOPS nominal, abo	t, fuel, & oxidizer usage to perform each maneuver during the mission. orbit transfers, JOPS, and demonstrations based on their ΔV values. ΔV ort, and racetrack maneuvers maintained within spreadsheet. Statistical ellant usage per orbit revolution and slew propellant usage per slew.
each maneuver durin	ates summary and detailed breakdown of propellant, fuel, and oxidizer usage for ng the mission from Cygnus Propellant Budget analysis. Spreadsheet also generates es for orbit transfer, orbit decay, and JOPS (nominal, abort, racetracks) maneuvers.

Performance Integrated Analysis ModelCenter

Server Browser



Statistical Validation of Propellant Load

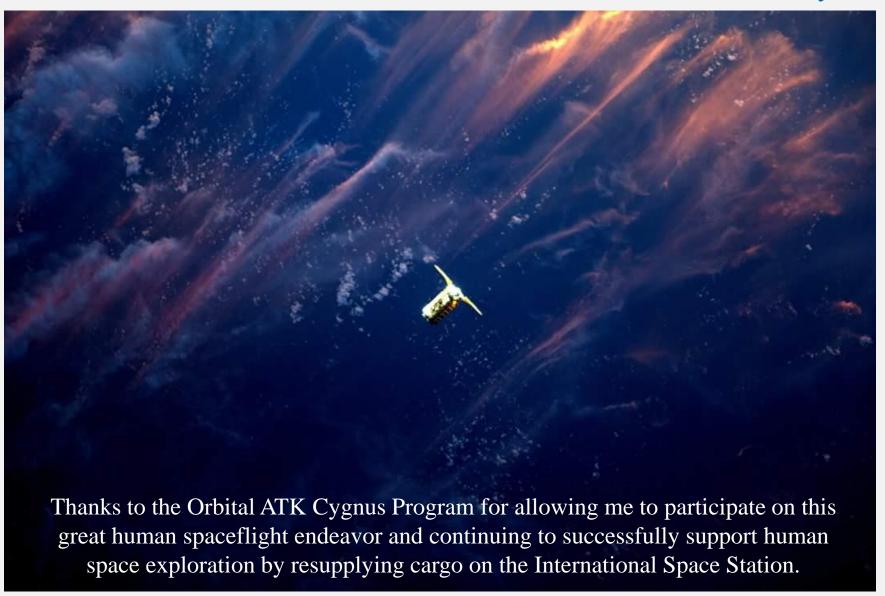
- Propellant load validated from CRS Performance Integrated Monte Carlo analysis
- Analysis calculated total mission $+3\sigma$ propellant, fuel, and oxidizer consumption
 - > Total mission $+3\sigma$ propellant results in 7-9% reduction vs. sum of budget $+3\sigma$ line items
- Propellant load has positive margin to analysis $+3\sigma$ propellant usage for CRS missions to date

Total Fuel Usage (kg)

Occurrences

Maneuver +3σ Consumption	Fuel	Oxidizer	Propellant
Early Burns			
Phasing Burns			
RAAN/Inclination Plane Change			
Orbit Trim Burns			
Ascent Attitude Keeping			
Ascent Slews			
Ascent Consumption			
1st Approach Prox Ops			
1st Abort + Racetrack			
2nd Approach Prox Ops			
Departure			
Prox Ops Slews			
Prox Ops Consumption			
Descent Burns			
Descent Attitude Keeping			
Descent Slews			
Descent Consumption			
Residuals			
Total Mission +3σ Consumption			
Sum of +3o Consumption			

Total Oxidizer Usage (kg)


Summary

- MBSE ≠ SysML: MBSE is also developing integrated analysis models to explore & evaluate trade space, generate robust designs, integrate & automate complex analyses
- SSG has extensive experience performing multi-disciplinary analyses using Phoenix Integration ModelCenter
- Orbital ATK Cygnus spacecraft continues to successfully deliver cargo to ISS
- ModelCenter used to develop multi-disciplinary integrated analysis to optimize propellant usage during the CRS missions and validate the Cygnus propellant load
- ModelCenter integrated analysis performed for every CRS mission to validate the Cygnus propellant load

Acknowledgement

