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Orbital ATK Overview Orbital ATK

Aerospace Systems

Orpizal . == Orbital ATK /) &= AT "o

The Partner You Can Count On- Innovation... Delivered

® Global Aerospace and Defense Systems Company Established by Merger of Orbital and Alliant
Techsystems in 2015

® Leading Developer and Manufacturer of Innovative, Reliable and Affordable Products for
Government and Commercial Customers

» Launch Vehicles, Rocket Propulsion Systems and Aerospace Structures
» Tactical Missile Products, Armament Systems and Ammunition
» Satellites, Space Components and Technical Services

® More Than 13,000 Employees, Including About 4,200 Engineers and Scientists

Flight Systems Group Defense Systems Group Space Systems Group
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Orbital ATK SSG MDAO/MBSE Experience  Orbifal ATK

“A standardized and robust modeling language is considered a critical enabler
for MBSE. The Systems Modeling Language (OMG SysML™) is one such general
purpose modeling language ...” - A Practical Guide to SysML, 2012

® MBSE # SysML
» SysML Is NOT a methodology or tool; it is a language that is tool/methodology-independent
» SysML Is NOT meant to replace modeling investments in other engineering disciplines
» SysML IS designed to support MBSE, but MBSE does not require SysML

® Orbital ATK has significant MBSE experience developing integrated analysis models to explore
& evaluate large design space, generate robust designs, & integrate/automate complex analyses
® SSG has extensive experience performing multi-disciplinary analyses using Phoenix Integration
ModelCenter®
> Integrate & automate analysis models across different software programs & platforms
» Optimize design with many optimization methods
> Explore design space sensitivity w/ parametric trade studies & Design of Experiment tools
> Assess/verify design robustness with probabilistic analysis tools (Monte Carlos)

® Many programs have used ModelCenter (Orion, Antares, CRS, Heavy Lift Study, ...)

Daniel Dvorak, “Model-Centric Engineering, Part 1: An Introduction
to Model-Based Systems Engineering”, JPL
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ICCS/COTS Proposal (2005-2006) Orbital ATK

® Integrated Visiting Vehicle sizing & mission analysis to
support ICCS/COTS proposal

» Architecture study focused on developing spacecraft that
maximizes on-orbit missions capabilities without
exceeding existing launch vehicle payload constraints

» Parametric trade studies conducted to explore sensitivity
of Space Tug mass to variation in payload mass, number of
missions, and CONOPS

» Convergence/optimization of spacecraft design gross mass
between FSG + SSG trajectory tools (MATLAB) & SSG
spacecraft sizing tools (MS Excel)
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"Space Tug: An Alternative Solution to ISS Cargo Delivery," AIAA 2009-6519
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CCDev2 Proposal (2010) Orbifal ATK

® Discipline tools integrated in ModelCenter for analysis of Abort Black-Out Zones
> Abort initial conditions extracted from LV trajectory MATLAB data file
> LAS mass properties & abort motor propulsion data extracted from spreadsheet
> Initial conditions, masses, and propulsion data passed to POST 3-DOF

» POST 3-DOF trajectory data post-processed to generate crew load limits & abort
instantaneous impact points using MATLAB

@ Parametric Trade Study: Performed abort simulation at intervals of LV trajectory
® Post-abort accelerations compared to NASA STD-3000 crew load limits
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Orion LAS PA-1 Validation/Verification (2006-2008) rbital ATK

® PA-1 flight test integrated mission analysis

conducted in ModelCenter

> Rapid turnaround customer-requested analyses

» Optimization of abort motor thrust profile

» Perform GN&C 6-DOF trajectory analysis for

configuration, initial conditions, and motors

performance variations

® \alidation & verification of performance

requirements with Monte Carlo analysis within

ModelCenter

® Analysis traceability back to requirements

database (Cradle via Excel)
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Antares Performance Analysis (2008-2010) Orbital ATK

® Antares Payload Performance conducted in
ModelCenter collaborative environment

> Integrated analysis model automatically updates and
evaluates POST 3DOF trajectory for changes in mass
properties, upper stage motor ballistics, launch site,
& target orbit

® ModelCenter parametric trade study tools conducted
payload performance analysis autonomously based on
matrix of input values & switches
» Parametric trade studies were conducted to explore

sensitivity of payload performance to variation in
orbit altitude, inclination, and launch site
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NASA Heavy Lift & Propulsion Systems Analysis . ,
& Trade Study (2010-2011) Orbirral ATK
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ISS Cargo Resupply with Orbital ATK Cygnus ~ Drbifal ATK

July 13, 2014

E

Mar. 22, 2

e ,ﬁw\"(l .
" e

Oct. 17, 2016

® Cygnus carries crew supplies, spare equipment
& scientific experiments to the ISS

® 16.5 mT of Cargo Delivered to ISS in 7 Flights
® 4 CRS Flights from 2017 to 2019
® 6 CRS2 Flights starting in 2019

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved 9



Cygnus Spacecraft Overview Orbital ATK

Cygnus consists of two modules: Service Module & Pressurized Cargo Module

> :ﬁ :

® Pressurized Cargo Module (PCM)

» Heritage: Multi-Purpose Logistics Module » Heritage: Orbital ATK Flight Proven
> Produced by Thales Alenia Space GEOStar™ & LEOStar™ satellites
> Total Cargo Mass: 3,200 - 3,500 kg » Power Generation: 2 Fixed Wing

> Pressurized Volume: 26.2 m3 Solar Arrays, ZTJ GaAs cells

> Berthing at ISS: Node 2 Common > Power Output: 3.5 kW (sun-pointed)

Berthing Mechanism (CBM) » Propellant: Dual-mode N,H,/MON-3
or N,H,

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved 10



Cygnus 1SS Resupply Mission Overview Orbital ATK
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Performance Analysis Motivation & Objective  rbital ATK

Motivation
® CRS Performance Enhancement with Mission Optimization
» Mission optimization opportunities selected to improve cargo performance & minimize mission impact
» Opportunity: Improved propellant consumption analysis & provide statistical estimation for total mission
— Increase fidelity of analyses for further system/subsystem developments & improvements
— Improve tool/process to easily generate statistical data to validate propellant usage during the mission
— End Goal: Provide statistical impact of each +3c propellant budget line item on total mission propellant

® Develop process to integrate subsystem discipline tools for accurate mission propellant usage estimation
> Integrate existing discipline tools: Flight Dynamics, Propulsion, GN&C, & Systems
» Enable rapid turn around of analyses for changing mission design, cargo accommodations & spacecraft configuration
» Support significant reuse: enable increased fidelity without major work; explore propellant impact for contingencies
» Perform Robust V&V of propellant load for each mission; results support propellant loading & ops thresholds

Objective

® Assess Cygnus propellant usage during CRS Mission to validate fuel load & oxidizer load
» Propellant usage calculated for each maneuver during mission

® Calculate propellant usage for each maneuver during CRS mission

® Perform Monte Carlo analysis of propellant budget
» Provide statistics for fuel & oxidizer usage during CRS Mission
» Compare mission +3c vs. sum of maneuver +3c propellant usage

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved 12



Mission Performance Optimization Process

Assumptions & Dispersions Spreadsheet

Antares

Launch Mass
Insertion Orbit Parameters

PSS

DVE & REA Propulsion Parameters
Pressurant & Residual Propellant Data

GN&C

Effective DVE + REA Isp vs. C.G.
6-DOF propellant usage distributions for
attitude control, slews, JOPS, Aborts,
and Departure

Early Burn Algorithm

FDS

ISS reference trajectory
Ascent Phasing Plan
Deorbit/Reentry Trajectory Plan

Systems

Mass Properties
Mission Cargo Manifest

Integrated Analysis of
End-to-End Mission
Performed using
Inputs/Models across
Cygnus Subsystems

Orb-4 Propellant Budget

Maneuver

mean | +30

Ascent Propellant

Prox-Ops Propellant

Deorbit/Reentry Propellant

Residual Propellant

Total Mission Propellant

Orbital ATK
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Cygnus Integrated Analysis N2 Diagram Orbital ATK
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Performance Analysis Assumptions & Dispersions Orbital ATK

® Analysis Assumptions for System, Mission, GN&C, and Propulsion variables
® Dispersions based on data from GN&C verification analyses and Propulsion analyses & tests
® Assumptions & dispersions reviewed and approved by CRS Program for each mission

Analysis Assumptions (units)

* ISS Circular Orbit Altitude (km) * Insertion Absolute Orbit Rev * Deorbit DV1 Perigee Altitude (km)
* Final Ascent Orbit Altitude (km) * Early Burn 1 A Orbit Rev * Deorbit DV2 Perigee Altitude (km)
* Atmospheric Model * Early Burn 1 Absolute Orbit Rev * Cygnus Area (mz)
* Launch Date * EB2 to JTRP A Orbit Rev * LV Payload Capability (kg)
* Launch Time * JTRP DV Absolute Orbit Rev * Delivered Cargo Mass (kg)
* Target ECI RAAN (deg) * Number of Slews per Maneuver * Disposal Cargo Mass (kg)
* Target Inclination (deg) * Number of Slews for Initial Sun-Pointing * Cygnus Operating Mass (kg)
* Insertion Latitude (deg) * Aborts Type * Cygnus Total Propellant Mass (kg)
* Insertion Longitude (deg) * Abort Racetrack Type * Number of Fuel Tanks
* Insertion Perigee Altitude (km) * Early Burn Slew Propellant Usage Rate (kg/slew) * Number of Oxidizer Tanks
* Insertion Apogee Altitude (km) * Mission Slew Propellant Usage Rate (kg/slew) * DVE Vacuum Isp (s)
* Duration from Insertion to JTRP (days)  * Deorbit DV1 Burn A Orbit Rev * DVE O/F Ratio
* Insertion A Orbit Rev * Deorbit DV2 Burn A Orbit Rev * Number of Contingency Aborts
* Deorbit DV Apogee Altitude (km) * Number of Contingency Racetracks

Analysis Dispersions (units) - Distribution

* F10.7 Solar Flux (SFU) - Triangle * Orbit Trim AV (m/s) - Uniform * JOPS Maneuvers AV (m/s) - Normal
* Geomagnetic Index - Triangle * Cygnus Drag Coefficient - Uniform * Racetrack Maneuvers AV (m/s) - Normal
* ISS Phase Angle (deg) - Uniform * REA Isp (s) - Uniform * Post-Departure Burn A Orbit Rev - Uniform
* Insertion Inclination (deg) - Triangle * Fuel Residual Mass (kg) - Uniform * Deorbit Error/Finite Losses AV % - Triangle
* Insertion ECI RAAN (deg) — Triangle * Oxidizer Residual Mass (kg) - Uniform * Ascent DVE + REA Effective Isp - Uniform

* Descent DVE + REA Effective Isp - Uniform
DV = Delta Velocity (AV) ECI = Earth-Centered Inertial JOPS = Joint Operations O/F = Oxidizer/Fuel
DVE = Delta Velocity Engine Isp = Specific Impulse JTRP = Joint Trajectory Reference Point  RAAN: Right Ascension of the Ascending Node
EB = Early Burn ISS = International Space Station LV = Launch Vehicle REA = Reaction Engine Assembly

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved 15



Propellant Consumption Analysis Approach Orbital ATK

® Cygnus propellant budget generated by calculating propellant usage for each
maneuver during the CRS mission

» Maneuvers and mission CONOPS provided by several reference documents listed in
analysis assumptions & dispersions
® Propellant usage for AV maneuvers calculated using rocket equation
AV = I, 9o In(MR), where

MR = (mprop_used + mprop_remain v Minert + mcargo) / (mcargo + Minert e mprop_remain)

» Apse raising/lowering & plane change AVs calculated using 2-body orbital mechanics
» Orbital decay AV from atmospheric drag calculated based on MSISE 2000
atmospheric density and number of orbit revolutions
» JOPS, abort, and racetrack AVs provided from analysis documentation
® Attitude control propellant usage calculated based on # of orbit revolutions

® Propellant usage for slews calculated based on #of slews and REA set

AV = Delta Velocity In = Natural Logarithm M rop_remain = Propellant Mass Remaining REA = Reaction Engine Assembly
g, = Standard Gravity Me,rg0 = Cargo Mass Mprop_used = Propellant Mass Used

Isp = Specific Impulse Mipere = INErt Mass MR = Mass Ratio

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved 16



Performance Integrated Analysis N2 Diagram  @rbital ATK
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Performance Integrated Analysis Breakdown

Monte Carlo Driver
(ModelCenter)

Orbital ATK

ModelCenter Probabilistic Driver facilitates Monte Carlo assessment of the propellant
budget. ModelCenter Converger Driver converges between orbit decay & propellant mass.

LV Mission Analysis
(Excel)

| Spreadsheet retrieves Cygnus insertion orbit parameters based
: on LV data run number. Insertion orbit parameters include
| perigee altitude, apogee altitude, inclination, and ECI RAAN.

.

Mission Initial | Script provides input for ISS orbit parameters,
Values Cygnus vehicle characteristics (CD, area), and
(VBScript) Cygnus initial masses at the start of the mission.

Early Burn AV
(Matlab)

Matlab script calculates the required AV for each Early
Burn maneuver, along with the perigee/apogee altitudes
and true anomalies of the orbit after each Early Burn.

Phasing & Ascent AV
(Matlab)

Matlab script calculates phasing orbit perigee/apogee & # of orbit
revs required to transfer from insertion orbit to ISS JTRP for specified
duration. Calculates required AV for each orbit transfer maneuver.

Matlab script calculates required AV for each deorbit /
reentry maneuver, along with the perigee/apogee
altitudes and true anomalies of the orbit after each burn.

De-orbit/Reentry AV
(Matlab)

Matlab script calculates AV resulting from atmospheric drag acting on Cygnus while
orbiting after each orbit transfer maneuver. Orbit decay AV calculation based on the initial
orbit parameters, Cygnus vehicle characteristics (mass, area, CD), and # of orbit revs.

Orbit Decay AV

(Matlab)

|
Spreadsheet calculates propellant, fuel, & oxidizer usage to perform each maneuver during the mission.
Maneuver propellant usage during orbit transfers, JOPS, and demonstrations based on their AV values. AV
dispersions for JOPS nominal, abort, and racetrack maneuvers maintained within spreadsheet. Statistical
data provides attitude control propellant usage per orbit revolution and slew propellant usage per slew.

CD = Coefficient of Drag

Cygnus Prop
Budget

(Excel)

Spreadsheet generates summary and detailed breakdown of propellant, fuel, and oxidizer usage for
each maneuver during the mission from Cygnus Propellant Budget analysis. Spreadsheet also generates
summary of AV values for orbit transfer, orbit decay, and JOPS (nominal, abort, racetracks) maneuvers.

Post-Processing

(Excel)

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved
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Performance Integrated Analysis ModelCenter

Orbital ATK
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Statistical Validation of Propellant Load Orbital ATK

® Propellant load validated from CRS Performance Integrated Monte Carlo analysis
® Analysis calculated total mission +3c propellant, fuel, and oxidizer consumption
> Total mission +3c propellant results in 7-9% reduction vs. sum of budget +3c line items
® Propellant load has positive margin to analysis +3c propellant usage for CRS missions to date
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Summary Orbital ATK

® MBSE # SysML: MBSE is also developing integrated analysis models to explore &
evaluate trade space, generate robust designs, integrate & automate complex analyses

® SSG has extensive experience performing multi-disciplinary analyses using Phoenix
Integration ModelCenter

Orbital ATK Cygnus spacecraft continues to successfully deliver cargo to ISS

® ModelCenter used to develop multi-disciplinary integrated analysis to optimize
propellant usage during the CRS missions and validate the Cygnus propellant load

® ModelCenter integrated analysis performed for every CRS mission to validate the
Cygnus propellant load

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved 21



Acknowledgement Orbifal ATK

Thanks to the Orbital ATK Cygnus Program for allowing me to participate on this
great human spaceflight endeavor and continuing to successfully support human
space exploration by resupplying cargo on the International Space Station.

Copyright © 2017 by Orbital ATK Inc. All Rights Reserved



