A Better Design with Model-Based Systems Engineering
Functional Verification using System-Level Modeling

Paul Goossens, VP, Engineering Solutions, Maplesoft
Andy Ko, Ph.D., Manager of Engineering Services, Phoenix Integration

Q&A Panel
Hisashi Miyashita, PhD, Director of MBSE Development, Maplesoft
Joydeep Banerjee, PhD, Application Engineer, Maplesoft
Detect Design Issues Early

Avoid High Cost of Late-stage Design Changes

Systems Design & Development Process
Functional Verification

Concept
- System Requirements
- Functional Specification
- System-level Synthesis
- Subsystem Design
- Detailed Design
- Detailed Analysis

Functional Mockup
- Compliance Test Plan
- Functional Mockup

Product
- Release Candidate
- System Validation
- System Integration
- Subsystem Test
- Unit Test

Implementation
- Software/
 Hardware/
 Procurement

MapleSim
- System-level virtual prototype
- Multi-domain sub-system integration
 Identify design issues very early

Architectural Models

Analytical Models
Functional Verification

- System Requirements
 - DOORS, Rhapsody, MagicDraw...
 - Maple, MapleSim, Simulink...
 - CAD, FEA, CFD, Spice, Saber...

- Functional Specification
- System-level Synthesis
 - ModelCenter
- Subsystem Design
- Detailed Design
- Detailed Analysis
- Compliance Test Plan

- Performance
 - ID = P001
 - This vehicle performance must be sporty and provide an affordable driving range for inter-city mobility.
 - ID = P002
 - The driving range must be longer than 300km in the normal drive mode.
 - lowerBound:RhpReal=300 units:RhpString=km
- Performance::Velocity
 - ID = P003
 - The max velocity must be larger than 130km/h
 - lowerBound:RhpReal=130 units:RhpString=km/h
- Performance::Acceration
 - ID = P004
 - The max vehicle acceleration needs to be larger than 4m/s² but must be lower than 10m/s²
 - lowerBound:RhpReal=4 upperBound:RhpReal=10 units:RhpString=m/s²

- System Limitation
 - ID = S001
 - For safety and regulations, the vehicle must conform to the conditions defined here
 - SystemLimitation::BatteryTemperature
 - ID = S002
 - The battery temperature must be between 250K and 320 K
 - lowerBound:RhpReal=250 upperBound:RhpReal=320 units:RhpString=K
 - SystemLimitation::VehicleWeight
 - ID = S003
 - The total weight must not exceed 1900kg
 - upperBound:RhpReal=1900 units:RhpString=kg

- Compliance Test Plan
 - Functional Mockup

© 2018 Maplesoft, a division of Waterloo Maple Inc.
Multi-domain Systems Design

Control (SW)

Software

Electrical

Domain-Specific Design

Mechanical

eCAD/EDA

MCAD

© 2018 Maplesoft, a division of Waterloo Maple Inc.
Control (SW)

Functional Verification against formal requirements models

Electrical

Mechanical

© 2018 Maplesoft, a division of Waterloo Maple Inc.
How to scale MBSE beyond “Expert use”?

MBSE Experts

Design Stakeholders
- Engineering, UX, Software, Business process etc.

Engineering Analysts

Architecture

Detailed Architecture

Impact Analysis

Compliance Tests

Trade studies, etc.

System Architecture (SysML)
- Structure
- Behavior
- Requirements
- Parametric Constraints

MapleMBSE

Maple

MapleSim

© 2018 Maplesoft, a division of Waterloo Maple Inc.
...many stakeholders need to do “modeling”

The aim of Systems Engineering is for many stakeholders to collaborate across many disciplines, so modeling tools for non-experts are vital.

Integrate models with commonly used spreadsheet interface

Project Manager

Req. Analysts

Electronics Engineer

Software Engineer

Dealer

Engineer
MapleMBSE

- Intuitive, spreadsheet-based UI for entering detailed system design definitions
 - Structures
 - Behaviors
 - Requirements
 - Parametric constraints
- Integration with standard MBSE platforms (e.g., Rhapsody, MagicDraw) for rapid impact analysis of design changes, e.g., conflicting requirements
- Optimized views for specific tasks
 - Impact Analysis of Requirements
 - FMEA: Failure Mode & Effects Analysis
 - Trade-off studies
 - Structure analysis (Design Structure Matrix)
Design Verification with ModelCenter
Requirements Compliance Testing

MapleMBSE

Phoenix ModelCenter with MBSEPAk

No Magic Teamwork Cloud

Cameo Systems Modeler

MapleSim

Maple

© 2018 Maplesoft, a division of Waterloo Maple Inc.
Compliance verification demo
Summary

- MBSE: Proven business methodology for managing design complexity, risk and costs
- MapleMBSE provides Excel-based UI for detailed product definition by a wide range of stakeholders, while maintaining integration with SysML architectural model
- MapleSim provide rapid functional mockups for verification of complex multidomain dynamic systems
- ModelCenter brings everything together for rapid requirements-compliance testing, trade-off studies, and impact analysis due to changes in design requirements
- Convergence of tools helps realize the V process
FREE Maple Plug-in for ModelCenter
www.maplesoft.com/products/toolboxes/modelcenter

• Easy implementation of Maple calculation worksheets in ModelCenter.
 – No need to convert to scripts
 – No “ModelCenter version” required

• Automatic detection of inputs and outputs from header information

• Dimensional units support

• Support for execution of MapleSim models
 – Pre-processing of model parameters
 – Model execution
 – Post-processing of results
Thank You

Questions?