Phoenix Integration and the Skunk Works® A History of Success, A Path to the Future

Clif Davies Senior Staff Aeronautical Engineer Conceptual Design Tools & Process Lead

© 2015 Lockheed Martin Corporation. All Rights Reserved

4/14/15

Skunk Works® Position Within The Corporation

Orlando Carvalho EVP, Aeronautics

Skunk Works_® – What We Do

Winning and Prototyping New Programs

Leveraging Investments in Game Changing Technologies

Development & Fielding Of Special Mission Aircraft To Meet Urgent National Needs

Improvements & Derivatives of Existing Products

Wide Range of Advanced Programs

Early, Driven Partnership

capabilities enabled our unique solutions

First Phoenix RCD Presentation - 2004

RCD Program Deployments

WALRUS Example

- Environment
- Geometry
- Landing System
- VMS
- Subsystems
- Structure
- Aerodynamics
- Propulsion
- Power Requirements
- Total Mass

Total Mass (tons)

CONVENTIONAL OPT.			
	μ	μ +/- 2σ	
Total Mass (tons)			
Range (n mi)	10,000	8,280	
L _{buoy} / M _{gross}	0.91	0.93	
P _{land} / P _{hull}	0.75	.92	

DAKOTA SBOUU (CD_0 , η_{prop} uncertain)			
	μ	μ +/- 2σ	
Total Mass (tons)			
Range (n mi)	11,700	9,960	
L _{buoy} / M _{gross}	0.95	.97	
P _{land} / P _{hull}	0.46	.62	

ADP Customizations

4

Expanding Dimensions, Disciplines, and Fidelity

Modelcenter Process Changes – ESAVE Program

ESAVE MDO Approach: RSM-Based Optimization

Changing MDAO Process

USA DoD Customer Directions

- Bend The Cost Curve
- **Better Buying Power 3.0**
- **Own The Technical Baseline**
- Modular Open System Architecture
- **Digital System Model**
- **Digital Thread**
- **Engineered Resilient Systems** \bullet
 - CREATE
 - HPC.mil
- Joint Security Implementation Guide

Model and Data Exchange Methods and Standards

Air vehicle cost mode

Ships – modular vessel

Cleared for Open Publication, DoD Case 15-S-0093

Helo – UH-60.

Demos &

Transitions

NDIA SE Conference, Oct 29, 2014

Ships – SSCTI

Helo – CH-47 blade

* 100 * *tan

Significant Mileston

Where is ADP Going With Phoenix/MDAO

- Model Discipline Growth
 - Increased model complexity
 - Increased DV's, constraints and objective functions
 - RSM methodology
- High Performance Computing
 - Higher fidelity earlier in programs
 - New Physics
 - Increased discipline coverage
- Pervasive MDOA
 - Web based MDAO
 - Server/Cluster based computing
 - Service/Agent based computing

