Multidisciplinary Analysis & Design Center for Advanced Vehicles

Multidisciplinary Optimization of Innovative Aircraft using ModelCenter

April 14th, 2015

Rakesh K. Kapania
Mitchell Professor
And
Joseph A. Schetz
Durham Chair in Engineering
Department of Aerospace & Ocean Engineering
General Framework

Physics Based Analysis

- Wing Weight
- Flutter
- Control/Stability

New Aircraft Concepts Analysis

- Ongoing Effort at Virginia Tech
- Improve Conceptual Design Analysis
- Extend Analysis to Non-Conventional Configuration

AIC Conceptual Design Analysis Platform

Multidisciplinary Analysis & Design Center for Advanced Vehicles
Overview

• Multidisciplinary Optimization (MDO) Tool at Virginia Tech
 • Developed over the past two decades

• Application
 • Truss-braced wing (TBW) aircraft MDO research
 • Earlier results – huge benefits of TBW to fuel burn and TOGW reduction as observed through MDO studies
 • Effect of flutter constraint in MDO studies of TBW
 • Aeroelastic benefits of a Novel Control Effector to TBW via a MDO study
 • Preliminary stages of current MDO research for SUGAR III TBW aircraft
 • Tailless supersonic aircraft MDO research
TBW MDO research
VT MDO Framework

- Product of Two Decades Effort
- Analysis Platform: ModelCenter + FLOPS
 - ModelCenter: Connects Analysis Modules, Provides Optimization Algorithms
 - FLOPS: Provides Analysis Methods (Empirical)
- Double Loop Architecture:
 - TOGW Computation
 - Performance Optimization
- Application
 - Conventional
 - SBW and TBW
• Use Multidisciplinary Design Optimization (MDO) to explore the potential for LARGE improvements in subsonic, transport aircraft performance by employing truss-braced wings combined with other advanced technologies.
Design Load Cases

<table>
<thead>
<tr>
<th>Load Case</th>
<th>Load Case Type</th>
<th>Fuel (%)</th>
<th>Altitude (kft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+2.5g</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>+2.5g</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>-1.0g</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>-1.0g</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>2.0g Taxi Bump</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Gust (V_{app})</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Gust (V_{app})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Gust</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Gust</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Gust</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Gust</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>Gust</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>Gust</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>Gust</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Gust</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>Gust</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>17</td>
<td>Gust</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>
Design Variables

<table>
<thead>
<tr>
<th>#</th>
<th>Design Variables</th>
<th>Cantilever</th>
<th>SBW</th>
<th>TBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuel Weight</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Max Required Thrust</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>Design Altitude</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>Wing Tip X co-ordinate</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>Fuselage Strut Joint</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>Jury-Wing Joint</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>Wing-Strut Joint</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>Jury-Strut Joint</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>Offset Length</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>Wing Span</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>Root Chord Thickness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>Tip Chord Thickness</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>Strut Thickness at Wing Intersection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>Strut Thickness at Fuselage Intersection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>Strut Thickness at Intersection with Jury</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>Root Chord Length</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>Tip Chord Length</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>Strut Chord Length at Wing Intersection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>Strut Chord Length at Fuselage Intersection</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>20</td>
<td>Strut Chord Thickness at intersection with Jury</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>21</td>
<td>Jury Chord Length</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Non-geometric Design variables

Geometric Design variables
Constraints

- Range ≥ 7730 [NM] + 350 [NM] (reserve)/3115 [NM] + 200 [NM] (reserve)
- Initial Cruise ROC ≥ 500 [ft/min]
- Max. C_l (2-D) ≤ 0.8
- Available fuel volume ≥ required fuel volume
- Wing tip deflection ≤ 20.3 [ft.] (fuse. diameter)
- 2nd segment climb gradient (TO) ≥ 2.4\% (FAR)
- Missed approach climb gradient ≥ 2.1\% (FAR)
- Approach velocity ≤ 132.5 [kn.]
- Balanced field length (TO & Land.) ≤ 11,000 [ft.]/ 8,700 [ft.]
- Flutter speed ≥ Flutter boundary
- Roll rate, roll acceleration ≥ required values for projected banking motion in roll
Flight Mission of Transport Vehicle

235-passenger, 7730 NM range, Mach 0.85 dual-aisle transport aircraft (similar to 777)

162-passenger, 3115 NM range, Mach 0.70 single-aisle transport aircraft (similar to 737)
Earlier TBW MDO research
TBW Study Matrix

• Configurations:
 – Cantilever wing
 – Single member TBW: SBW
 – Three members TBW: Jury TBW

• Current Design goals:
 – Min. TOGW
 – Min. Fuel Weight and Emissions
 – Max. L/D

• 2 Friction drag cases:
 – Aggressive laminar:
 Wing Technology Factor = 1 (F-14 Glove exp.)
 Fuselage: riblets and “Flat Plate” Transition \(\text{Re}_x = 2.5 \cdot 10^6 \)
 – Current technology:
 Wing Technology Factor = 0 (Current wings)
 Fuselage: No riblets and “Flat Plate” Transition \(\text{Re}_x = 0.25 \cdot 10^6 \)
Cross Comparison – Long-range Mission “777-like”

- 2% Higher TOGW with 32% less fuel (57[klb] saved fuel weight)
- 112[ft] vs. 214[ft] half span
- 76[klb] vs. 133[klb] wing weight
Previous TBW MDO Study Conclusions

• TBW can improve performance
 – Lower structural weight for the same/higher span
 – Lower fuel weight
 – Lower t/c
 – Increased stiffness – lower deflection

• Min. TOGW design exhibits good structural/fuel weight compromise

• VT showed (results obtained without applying a flutter constraint)
 – up to 8% reduction in TOGW and 18% reduction in fuel burn for long-range mission with TBW/SBW over conventional cantilever
 – up to 3.6% reduction in TOGW and 9% reduction in fuel burn for medium-range mission for TBW/SBW over conventional cantilever
Effect of flutter constraint in MDO studies of TBW
Min TOGW Flutter Results – Medium-range

<table>
<thead>
<tr>
<th></th>
<th>POINT 1</th>
<th>POINT 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOGW (lbs.)</td>
<td>138,400</td>
<td>140,600</td>
</tr>
<tr>
<td>Fuel wt. (lbs.)</td>
<td>26,600</td>
<td>26,500</td>
</tr>
<tr>
<td>Struct wt. (lbs.)</td>
<td>24,500</td>
<td>27,500</td>
</tr>
<tr>
<td>Wing/strut semi-span (ft.)</td>
<td>75.8/46.7</td>
<td>78.8/50.9</td>
</tr>
<tr>
<td>Root Chord (ft.)</td>
<td>13.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Strut-wing junc. chord (ft.)</td>
<td>8.8</td>
<td>12.0</td>
</tr>
<tr>
<td>Tip Chord (ft.)</td>
<td>4.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Strut chord (ft.)</td>
<td>5.9</td>
<td>5.3</td>
</tr>
<tr>
<td>Jury chord (ft.)</td>
<td>2.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Root t/c</td>
<td>0.111</td>
<td>0.051</td>
</tr>
<tr>
<td>Strut-wing junc. t/c</td>
<td>0.100</td>
<td>0.118</td>
</tr>
<tr>
<td>Tip t/c</td>
<td>0.107</td>
<td>0.050</td>
</tr>
<tr>
<td>Strut t/c</td>
<td>0.100</td>
<td>0.090</td>
</tr>
<tr>
<td>Jury t/c</td>
<td>0.090</td>
<td>0.095</td>
</tr>
</tbody>
</table>

Flutter Margin (%): -17.60, 1.30
Speed (KEAS): 367.2, 427.6
Freq. (Hz.): 4.25, 5.76

1.5% penalty on TOGW
1.15 \(V_D \)

TOGW vs Flutter Margin

Designs

Virginia Tech
Multidisciplinary Analysis & Design Center for Advanced Vehicles
Min Fuel Flutter Results – Medium-range

- **Fuel wt. (lbs.):**
 - POINT 1: 23,700
 - POINT 2: 24,900

- **TOGW (lbs.):**
 - POINT 1: 141,000
 - POINT 2: 142,500

- **Struct wt. (lbs.):**
 - POINT 1: 30,400
 - POINT 2: 29,800

- **Wing/strut semi-span (ft.):**
 - POINT 1: 97.4/49.6
 - POINT 2: 85.6/48.6

- **Root Chord (ft.):**
 - POINT 1: 14.4
 - POINT 2: 14.6

- **Strut-wing junc. chord (ft.):**
 - POINT 1: 8.9
 - POINT 2: 8.2

- **Tip Chord (ft.):**
 - POINT 1: 3.4
 - POINT 2: 4.1

- **Strut chord (ft.):**
 - POINT 1: 3.6
 - POINT 2: 4.0

- **Jury chord (ft.):**
 - POINT 1: 3.0
 - POINT 2: 3.2

- **Root t/c:**
 - POINT 1: 0.107
 - POINT 2: 0.111

- **Strut-wing junc. t/c:**
 - POINT 1: 0.136
 - POINT 2: 0.122

- **Tip t/c:**
 - POINT 1: 0.063
 - POINT 2: 0.092

- **Strut t/c:**
 - POINT 1: 0.083
 - POINT 2: 0.115

- **Jury t/c:**
 - POINT 1: 0.098
 - POINT 2: 0.083

- **Flutter Margin (%):**
 - POINT 1: -15.30
 - POINT 2: 0.01

- **Speed (KEAS):**
 - POINT 1: 372.6
 - POINT 2: 417.2

- **Freq. (Hz.):**
 - POINT 1: 3.25
 - POINT 2: 4.26
Aeroelastic benefits of Novel Control Effector to TBW via MDO study
Background

Motivation
• Minimizing fuel burn (major objective - NASA N+3 Fixed Wing) results in flexible aircraft with large-aspect ratio (like truss-braced wing)
• Flexible truss braced wing (TBW) aircraft prone to control reversal and aeroelastic instabilities especially as span increases

Conventional solution to aeroelastic problems
• increase in wing weight, additional control surfaces
• reduction in aerodynamic efficiency due to larger thickness ratio and chord, limited span

Alternative solution
• Aim – retain sufficient aileron effectiveness for roll control either conventionally or in reversal
• Develop a novel control effector (NCE) – a wing tip with variable sweep
• Use VT MDO to search a large number of probable good fits for the NCE
MDO results – TBW (Fuel weight v flutter margin)

Design Parameters

<table>
<thead>
<tr>
<th></th>
<th>TBW Design 1</th>
<th>TBW Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel wt. (lbs.)</td>
<td>149,000</td>
<td>138,000</td>
</tr>
<tr>
<td>TOGW (lbs.)</td>
<td>479,000</td>
<td>476,700</td>
</tr>
<tr>
<td>Wing/strut semi span (ft.)</td>
<td>121.35/71.68</td>
<td>130.64/71.39</td>
</tr>
<tr>
<td>Root chord (ft.)</td>
<td>20.69</td>
<td>20.89</td>
</tr>
<tr>
<td>Tip chord (ft.)</td>
<td>15.35</td>
<td>11.10</td>
</tr>
<tr>
<td>Strut chord (ft.)</td>
<td>11.98</td>
<td>13.10</td>
</tr>
<tr>
<td>Root chord (ft.)</td>
<td>3.00</td>
<td>3.03</td>
</tr>
<tr>
<td>Root t/c</td>
<td>0.113</td>
<td>0.114</td>
</tr>
<tr>
<td>Tip t/c</td>
<td>0.091</td>
<td>0.085</td>
</tr>
<tr>
<td>Strut t/c</td>
<td>0.100</td>
<td>0.110</td>
</tr>
<tr>
<td>Root t/c</td>
<td>0.080</td>
<td>0.078</td>
</tr>
<tr>
<td>Flutter margin</td>
<td>-0.33</td>
<td>-5.53</td>
</tr>
</tbody>
</table>
Roll motion of TBW designs

- TBW not sufficiently flexible to achieve required bank angle
- NCE wing-tip required
TBW designs with NCE wing-tip

- Various forward and backward sweep angles NCE wing-tip (~15% of span) applied to the TBW
- Swept wing-tip labels
 - sf5: swept forward 5 degrees relative to wing sweep
 - sb10: swept back 10 degrees relative to wing sweep
 - as-is: no sweep relative to wing

TBW Design 1:
- (a) sf5 – 5 deg forward
- (b) as-is
- (c) sb10 – 10 deg backward

TBW Design 2:
Flutter & bank angles for TBW design 1 with NCE

NCE tip helps TBW design 1 to meet the required bank angles and also helps to meet the required flutter margin.
Flutter and bank angles for TBW design 2 with NCE

NCE tip helps TBW design 2 to meet the required bank angles and also helps to meet the required flutter margin.
Comparison of cantilever with NCE aided TBW

<table>
<thead>
<tr>
<th>Design parameters</th>
<th>Cantilever</th>
<th>TBW Design 1 no NCE</th>
<th>TBW Design 1 with NCE</th>
<th>TBW Design 2 no NCE</th>
<th>TBW Design 2 with NCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel weight (lbs.)</td>
<td>157,000</td>
<td>149,000 (-5.1%)</td>
<td>149,000 (-5.1%)</td>
<td>138,000 (-12.1%)</td>
<td>138,000 (-12.1%)</td>
</tr>
<tr>
<td>TOGW (lbs.)</td>
<td>482,000</td>
<td>479,000</td>
<td>479,000</td>
<td>476,700</td>
<td>476,700</td>
</tr>
<tr>
<td>Flutter margin (%)</td>
<td>Does not flutter</td>
<td>-0.33</td>
<td>Constraint satisfied</td>
<td>-5.53</td>
<td>Constraint satisfied</td>
</tr>
<tr>
<td>Critical bank angle at cruise (degs.)</td>
<td>Constraint satisfied</td>
<td>12 (<< 30)</td>
<td>Constraint satisfied</td>
<td>18(<30)</td>
<td>28.6(~30)</td>
</tr>
</tbody>
</table>

Conclusion
- NCE wing-tip helps TBW design 1 to meet required roll control capabilities and reduce fuel burn by 5.1%
- NCE wing-tip helps TBW design 2 to almost meet the roll control requirement and aid in flutter avoidance – reduces fuel burn 12.1%
Tailless supersonic aircraft
MDO research
Motivation

- Bring physics based analyses forward into conceptual design stage
 - Traditionally rely on empirically based methods
 - Advantages of physics-based methods
 - Identifies problems/issues that could show up later in design
 - Produces overall better designs
 - Multi-fidelity analyses can be used to quickly explore large regions of design space with minimal computational cost
 - Reduces late stage costs
Aircraft MDO Framework (N^2)

- Developed a multi-disciplinary, multi-fidelity design, analysis, and optimization framework for aircraft conceptual design
- Each module (discipline) can be either an analysis or an optimization within itself

Medium-Fidelity Tailless Supersonic N^2 Diagram

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowl and Inlet</td>
<td>Geometry</td>
<td>Configuration: Mach #, Alt.</td>
<td>Cowl, Aft deck</td>
<td>Configuration</td>
<td>Tank and engine locations</td>
<td>Wing area</td>
<td>Noise shielding factor</td>
<td>Configuration, Avail. fuel vol.</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>Skin temp., Loading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aero. data in flight envelope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEWS</td>
<td>EEWS weight</td>
<td>Structural weight - EEWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOPS Structures</td>
<td>Structural weight - other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOPS Weights</td>
<td>Aircraft weight in flight envel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOGW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOPS Mission Performance</td>
<td>Detailed take-off parameters</td>
<td>Req. fuel volume</td>
<td></td>
<td></td>
<td>Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOPS Noise</td>
<td>Noise output</td>
<td></td>
<td></td>
<td></td>
<td>Constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrust, Altitude, Mach #, BPR, etc.</td>
<td>Configuration</td>
<td></td>
<td></td>
<td></td>
<td>Optimization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Propulsion Module

- **Low-fidelity**
 - Flight Optimization System (FLOPS)
 - Based on Navy NASA Engine Program
 - Calculates engine analysis: thrust, fuel flow, etc. at given atmospheric flight conditions
 - Limitations
 - Thrust related to type of aircraft
 - Weight estimate
 - No dimensions

- **Medium/High Fidelity**
 - Numerical Propulsion System Simulations (NPSS) & WATE++
 - Performs engine analysis
 - Produces better (more accurate) estimate of weight
 - Calculates dimensions
Virginia Tech Class-Shape Transformation (VT-CST)

- Parametric mathematical model to describe the outer mold-line shape of an aircraft
 - Based on Kulfan CST developed at Boeing
 - Equations (Bernstein polynomials) are analytic and can represent a variety of common shapes
 - Airfoil
 - Wing
 - Cowl
 - Ramp
 - Fuselage
 - Shapes can be combined to form overall water-tight object
 - Geometry model easily extensible to handle a variety of aircraft configurations
 - Multiple wings
 - Multiple fuselages
 - Multiple engines
 - Code written in object-oriented C++ and is platform independent
Aerodynamics Module

- **Low-fidelity**
 - WingDes
 - 2D panel method - can only represent clean wing
 - Lift and induced drag coefficients
 - Friction
 - Viscous and pressure drag coefficients
 - AWAVE
 - Wave drag coefficient

- **Medium-fidelity**
 - Zonair
 - 3D panel method for entire aircraft geometry to generate aerodynamic information at both subsonic and supersonic speeds
 - Can represent control surfaces and calculate stability

- **High-fidelity**
 - Computational Fluid Dynamics
 - This capability is currently in development
 - Wind Tunnel Testing
 - Rapid prototyping (3D-printing) can be used to quickly generate models that are used for wind tunnel tests
 - This capability is currently in development
Weight Estimate Module

- **Low-fidelity: Empirical estimate**
 - FLOPS Weight Generator
 - An empirical weight estimate of structural and nonstructural mass based on ultimate and maneuvering load factor

- **Medium-fidelity: Structural Finite Element Analysis (under development)**
 - Automatic Generation of a structural model for finite element analysis
 - Geometry module utilized to develop mesh based on input parameters
 - Number and locations of bulkheads, spars, ribs
 - Material properties
 - Non-structural weight information, e.g. fuel, payload, etc.
 - This information currently must be generated through empirical models

 - Finite Element Analysis in NASTRAN
 - Analyses: static aeroelasticity, flutter, buckling

 - Structural Optimization
 - Optimize structural configuration (layout and thicknesses) to minimize weight subject to constraints on stresses, buckling, flutter modes, etc.
Flight Performance and Mission Analysis Module

- **FLOPS**
 - **Mission is specified:**
 - Take off and landing field lengths, speed, etc.
 - Each leg of flight in terms of distance and altitude
 - **Code determines fuel burned (required within the aircraft) based on:**
 - Weight information from Weight Estimate Module
 - Volume of fuel tanks from Geometry Module
 - Aerodynamic information (lift and drag coefficients) from Aerodynamics Module
 - Power available and fuel burn rates from Propulsion Module
Other Analysis Modules

- **Embedded Engine Exhaust-washed Structures (EEWS)**
 - Identified early as a critical analysis – large impact on later design stages
 - Topology optimization of structures subject to mechanical and thermal loading

- **Noise**
 - Noise calculations performed by FLOPS mission analysis
MDO enabled designs – Medium Fidelity Framework

- **Overall optimization**
 - Two successive genetic algorithms
 - Genetic algorithms: NSGA-II

- **Result**
 - Trapezoidal aircraft configuration similar to Northrop YF-23 or Boeing concept F/A-XX
Future Work

- **Currently under development**
 - **Stability Analysis**
 - Rigid stability analysis developed, but not integrated into framework at present
 - Flexible stability analysis under development
 - **Physics based weight estimate**
 - Structural MDO – finite element analysis and aeroelasticity
 - **High-fidelity aerodynamics**
 - CFD
 - Rapid Prototyping and Wind Tunnel Testing

- **Repeat optimization with new modules included**
Benefits/ Drawbacks of ModelCenter

- **Benefits - Excellent multidisciplinary environment**
 - Readily available plug-ins - Matlab, ANSYS, NASTRAN, ABAQUS
 - Flexible plug-in (wrapper) – JAVA or Python scripts
 - User can develop in-house executables and use them
 - Links – Connects analysis to nodes each other or to optimization nodes
 - Several legacy optimizers available
 - Popular optimizers available with purchased license
 - Prompt customer service (proximity of Phoenix@VT CRC)

- **Needed Improvements– A LINUX version, and robust parallel processing framework**

- **ModelCenter is only Windows – Linux based HPC nodes can be connected but via complicated route**
 - Improved memory management for legacy optimizers
 - More documentation, currently has only simple examples - far from real life complicated examples which require parallel processing