ICME with ModelCenter

Alan Arico Phoenix Integration V1.0 R1

DESIGNPROCESSOPTIMIZATION

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

ModelCenter

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

Industry Trends

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

• Empower Design for Manufacturing (DFM)

- Enables engineers to understand how a product is designed to function, how it is manufactured, and how it fails at the limits of performance
- ICME Integrated Computational Materials Engineering
 - "the <u>integration</u> of materials information, captured in computational tools, with engineering and product performance analysis and manufacturing process simulation" (National Research Council 2008b)

Business Challenges

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

Design as Manufactured - Welding

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

What Is Weld Distortion?

- "Due to local heating and cooling during welding, complex thermal stresses occur during welding; and residual stress and distortion result after welding."
- These local residual stresses build until enough force is created to permanently deform the structure.

What are the Benefits of Predicting Weld Distortion?

- Better Planning
 - Software Tools can provide accurate distortion predictions.
 - Lead to Less Weld Distortion \rightarrow Less Repair \rightarrow Less Costs

Less Costs = Opportunity to Build More Parts = Higher Profits

- Why Are Software Tools Not Used Everywhere Today?
 - Current Tools Are NOT Intuitive (easy to use), nor provide a clear path to minimize distortion.

Basically... Today's tools require a dedicated analyst to utilize.

- Unrealistic Expectation & Lack of Trust
 - If the analyst says the part should distort 1", it better distort 1"

What are the Benefits of Predicting Weld Distortion?

- What is the Answer?
 - Simplify the Models (Use the 80% Rule To Solve Majority of Problems – Not all welding and distortion problems).
 - 2. Provide a Wizard to Drive the Process
 - 3. Utilize ModelCenter to Drive Best Weld Sequence to Minimize Distortion.
 - 4. Incorporate new weld sequences into manufacturing process.
 - 5. Ensure feedback between engineering and manufacturing so process continually improves.

DESIGN PROCESS OPTIMIZATION

Minimize Weld Distortion Through Sequence Optimization

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

Simple Demonstrator

- ESI WeldPlanner simulation
 - Steel Structure with Stiffening plates
 - Weld Sequence Optimization
 - 3D Elements (Can also be done with 2D Elements for thin wall structures) Through-cuts

Access holes

DESIGN PROCESS OPTIMIZATION

Simple Demonstrator

- ESI Weld Planner Model File Is Passed to Phoenix Integration ModelCenter
- Sensitivity Analysis Is Completed to Determine Worst Weld Paths
- Stochastic-Optimization
 Sequence is Created and Run to Minimize Distortion
- Results Provide Plot Of Outliers and Best Discovered Sequence

Weld Planner Results

Weld Planner Model File

ModelCenter Sensitivity, Stochastic-Optimization Optimal Sequence Established

Results

- 72 Permutations were created and run
- Each Permutation are Variations in Sequence
- Max Distortion is Calculated throughout each permutation.
- Results are gathered and Sorted Based On Max Distortion.
- **Final Sequence is Provided**
- New Sequence Resulted in 17% Reduction in Distortion

Weld Sequence Optimization

All 72 Permutations (Sequences) are Shown

DESIGN**PROCESS**OPTIMIZATION

Design as Manufactured - Casting

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

ProCAST

 Simulates the casting process

PHOENIX

- Given geometry, materials and a casting process, ProCAST can predict the material behavior during the steps of the casting process
- What happens if you don't like the result?
 - Utilize human expertise to manually try alternate solutions

DESIGN**PROCESS**OPTIMIZATION

0

ProbabilisticAnalysis

lastrar

Model Setup

~		data 🗖 🖼
Probabilistic Analysis Tool		
basic		
Design Variables		
 Name Model ProbabilisticAnalysis Nastran, PSHELL.shell_41_thickness Model ProbabilisticAnalysis Nastran, PSHELL.shell_42_thickness Model, ProbabilisticAnalysis, Nastran, PSHELL.shell_46_thickness Model, ProbabilisticAnalysis, Nastran, PSHELL.shell_44_thickness Model, ProbabilisticAnalysis, Nastran, PSHELL.shell_44_thickness Model, ProbabilisticAnalysis, Nastran, PSHELL.MAT1E Model, ProbabilisticAnalysis, Nastran, PSHELL, MAT2E 	Distribution Normal Mean: 2.3924 StdDev: 1% Low: High: Image: Comparison of the comp	
Responses Name Model.ProbabilisticAralysis.Nastran.disp5 Model.ProbabilisticAralysis.Nastran.stress51 Model.ProbabilisticAralysis.Nastran.stress12 Model.ProbabilisticAralysis.Nastran.stress21 Model.ProbabilisticAralysis.Nastran.stress21 Model.ProbabilisticAralysis.Nastran.stress22 Model.ProbabilisticAralysis.Nastran.stress22 Model.ProbabilisticAralysis.Nastran.stress52	Response Levels Bounds: Lower: Upper: 60 Bounds: Lower: Upper: 700 Bounds: Lower: Upper: 200	
Method		
	Criuse Number of Huns;	
Status Ready	View Dutput	
ОК	Add to Existing Data Explorer 🔲 Validate Al 🛛 Run Options 🛛 H	elp

DESIGN PROCESS OPTIMIZATION

Automating ProCAST

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

DESIGN PROCESS OPTIMIZATION

ModelCenter

Design Optimization

- Run virtual experiments
 - Run ProCAST 10's, 100's, or even 1000's of times in an automated fashion
- Trade Study Types:
 - Sensitivity
 - Design of Experiments
 - Optimization
 - Probabilistics

DESIGN PROCESS OPTIMIZATION

© 2014 Phoenix Integration, Inc. All Rights Reserved. Proprietary and Confidential.

ProCAST Plug-In for ModelCenter

RS Fi	Assign			nples\Tutor	ials\stress\.S	tress.prs	
Variat	Materials # 1 Steel_H13 # 2 Steel_H13 # 3 Steel_H13	CASTING MOLD MOLD	Empty No No Search	rerties V	Materials Availab	Boundary Conditions	Initial Conditions Output Criteria Materials (1) Fe_Pure (2) Steel_H13 (3) Steel_H13-Stress (4) Steel_Low_Carbon (5) Steel_Alloy_Manganese (6) Steel_Stainless_Austenitic (7) Steel_Plain_Carbon_AISI_1008 (8) Steel_Plain_Carbon_AISI_1026 (9) Steel_Plain_Carbon_AISI_1040 (10) Steel_Plain_Carbon_AISI_1040 (10) Steel_Plain_Carbon_AISI_1040 (11) Steel_Plain_Carbon_AISI_1086 (11) Steel_Plain_Carbon_AISI_1086 (11) Steel_Plain_High_Carbon (12) Steel_Low_Alloy_AISI_5132 (13) Steel_Low_Alloy_SAE_3435 (14) Steel_Alloy_Chrome (15) Steel_Alloy_Silicon (16) Steel_Stainless_Ferritic (17) Steel_Stainless_AISI_Type_316
-	▲ 1 [F] Fe_Pure 2 {F} Steel_H1 3 {F} Steel_L0 5 {T} Steel_A1 6 {F} Steel_St 7 {T} Steel_Pi 8 {T} Steel_Pi 9 {T} Steel_Pi	Materials 13 13-Stress w_Carbon oy_Manganese ainless_Austeniti ain_Carbon_AISI ain_Carbon_AISI ain_Carbon_AISI	ic _1008 _1026 _1040				Apply OK Canc

Parametric Studies

DESIGN PROCESS OPTIMIZATION

Design for Manufacturing

PHOENIX

Welding Optimization

Casting Optimization

Industry Consortiums

- LIFT (ALMII)
- America Makes (NAMI)
- IACMI
- MAI HOW5
- Power America

LIFT Industry Partners

Special Thanks

- ESI: Tony Davenport/Brian Shula Welding Simulation
- ESI: Sam Scott Casting Simulation