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Outline

• Learning algorithms to classify optimization problems

– Which is the better optimizer for a particular problem? 

– How would you distinguish different optimization problems?

• Multifidelity optimization under uncertainty

– A flexible framework to use different information sources to 

accelerate optimization under uncertainty

→ Towards goal-driven systematic management of 

multiple information sources and multiple solvers



OPTIMIZER 

CLASSIFICATION:
Which is the better optimizer for a particular problem? 



Learning algorithms to classify optimization problems

• Offline classification

– Maps problem types to optimization solution methods

– Identify classification metrics (problem attributes) and scoring 

system

– Build a database by running a range of test problems; use 

supervised and/or semi-supervised learning algorithms to build 

mapping

• Online assignment of an optimization method

– Evaluate metrics and recommend an optimization method

– Both a priori and adaptively as optimization proceeds

– Will also support online optimization parameter tuning



Classification System

Optimizer classification characterized by:

1. Number of function calls

2. Success rate

3. Convergence score

4. Feasibility score

Design space (optimization problem) classification 

characterized by

1. Dimension of the design space

2. Global smoothness of the design space

Captures the performance of the optimization 

algorithms for numerous test problems



Convergence score

• Convergence score measures the overall convergence 
rate of one optimization run, using the arithmetic mean of 
the iteration-specific convergence progress:

• Accounts for distance to best known optimum and 
number of optimization iterations

• For constrained problems, we consider a separate 
feasibility score
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Feasibility score

• Captures constraint violations for all iterations
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• Constraint functions 𝑐𝑖 and tolerances 𝛼𝑖 can be written 

for linear, nonlinear equality and inequality constraints

•  𝑐𝑖 is a normalizing constant for constraint 𝑖

• Score increases penalty for violations in later 

optimization iterations



DESIGN SPACE 

CLASSIFICATION:
How would you distinguish different optimization problems?



How well is the design space represented by a polynomial 
response surface?

• For a model 𝑓, a third-order polynomial, 𝑝3, is fitted to 

the training set computed with 𝑁𝑡𝑟𝑎𝑖𝑛 = 64 DOE points.

• The polynomial is evaluated at 𝑁𝑡𝑒𝑠𝑡 = 64 (different) test 

points 𝑥𝑖 and compared to the actual value of the 

function. This defines a metric 𝑀:



CLASSIFICATION EXAMPLE



Offline scoring applied to a database of test problems

• 11 functions from CEC14 tested in dimension 3 on [-100,100]3

• Functions difficult to optimize.

1 - High conditioned elliptic function

2 - Bent Cigar function

3 - Discuss function

4 - Rosenbrock's funtion

5 - Ackley's function

6 - Weierstrass function

7 - Griewank's function

8 - Rastrigin's function

9 - Modified Schwefel's function

10 - Katsuura funtion

11 - HappyCat function



Scoring functions offline

• Each function is optimized using three 

algorithms:

– Quasi-Newton

– Nelder-Mead simplex

– Simulated Annealing

• 64 initial guesses, selected by DOE

• Averaged convergence score computed for each 

function, plotted vs. the design space metric



Offline scoring
Convergence score vs. design space metric



• Nelder-Mead 
performs well

Offline scoring
Cases with low metric value



Offline scoring
Cases with medium metric value

• Quasi-Newton 
performs well 
at lower end 
and higher end

• Nelder-Mead 
performs well 
in mid range 



Offline scoring
Cases with high metric value

• Nelder-Mead 
performs well 
but only one 
test case



Offline scoring: Conclusions

• The offline scoring for the unconstrained test 

problems suggests that:

– Nelder-Mead performs well over a large range of the 

problems tested

– There is an intermediate range of metric values where 

Quasi-Newton performs well

– Local deterministic optimizers have consistently 

higher convergence scores than the global heuristic 

optimizer over these test problems



Thermal design demonstration problem

• REXIS Solar X-ray Monitor (SXM)

• Thermal model computes the temperature distribution and 

heat flux between the parts of the SXM instrument using a 

five-node lumped parameter thermal model [Stout, 2015]

• Model runtime: ~60 secs for thermal analysis over 7-day 

modeling period



SXM optimization problem setup

• Objective: Minimize thermal power transfer between 

SXM and spacecraft

• Constraint: Upper bound on maximum error between the 

target and actual SXM temperature

• Design variables: controller gain, controller frequency, 

voltage of thermal controller



SXM optimization problem

• The metric 𝑀 is computed using 64 training 
points and 64 test points: for the SXM problem 
we find 𝑀 = 0.56

• This informs an a priori recommendation to 
choose a local deterministic optimizer

• To check the recommendation, we optimize 
using GA, SQP, and interior point. In each case, 
the convergence score is computed and 
averaged over 10 initial guesses



Offline scoring recommends a local deterministic 
optimizer

• Quasi-Newton 
has best 
performance at 
closest metric 
value (𝑀 = 0.56)

• Nelder-Mead 
would also be a 
reasonable 
recommendation



Offline suggestion is confirmed by online score

• SQP does well on 
the SXM problem

• GA fails (not 
shown)

• Comparison 
limited by the fact 
that the offline 
database is based 
on unconstrained 
algorithms while 
the SXM problem 
is constrained



MULTIFIDELITY OPTIMIZATION 

UNDER UNCERTAINTY



Multifidelity modeling

Often have available several physical and/or numerical 
models that describe a system of interest.

– Models may stem from different resolutions, different 
assumptions, surrogates, approximate models, etc.

Multi-information source management:
How should we best use all available models and data in 
concert to achieve

– Better decision-making (optimization, control, design, 
policy-making)

– Better understanding of modeling limitations
→ guidance for model development, experiments



Multi-information source management : Ingredients

• Multifidelity model construction
– Building surrogate, hierarchical or competing models

→ exploiting structure

• Quantification of uncertainty and model fidelity
– How good is a model for a given purpose

• Multifidelity model management
– Which model to use when

– Balancing computational cost with result quality

– Convergence guarantees

– Model-model and model-data fusion

– Model adaptation



Data-fit models

Multifidelity models

Projection-based reduced models
• Exploit problem structure
• Embody underlying physics

= + = +

Simplified
physics models

=

=

from Choi et al.



Multifidelity optimization

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Design variables 𝑥
Objective 𝑓(𝑥)
Constraints 𝑔(𝑥), h(𝑥)

optimizer

x
fhi

ghi

hhi

hi-fi model

Example: Deterministic Design Optimization



Multifidelity optimization: Use cheap models as much as possible; 
use adaptation of low-fidelity models

optimizer

x

fhi ghi hhi

hi-fi model

xj

min
𝑥

𝑓 𝑥

s.t. 𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

Design variables 𝑥
Objective 𝑓(𝑥)
Constraints 𝑔(𝑥), h(𝑥)

optimizer

x
fhi

ghi

hhi

hi-fi model

Adaptive corrections: Exploit model local accuracy
• Computed using occasional recourse to the high-fidelity model
• Constructed so that surrogate has desirable properties

(e.g., for convergence)
• Managed using e.g. trust regions (Alexandrov and Lewis, 2001; Conn et al., 2009)

lo-fi
model correction

flo + a
glo + b
hlo+ g

Example: Deterministic Design Optimization



The challenge of optimization under uncertainty (OUU)

High-fidelity model embedded in a UQ loop within an
optimization loop
• Large computational cost
• Need an optimizer that is tolerant to noisy estimates of statistics

min
𝑥

𝑓 𝑥, 𝑠 𝑥

s.t. 𝑔 𝑥, 𝑠 𝑥 ≤ 0

ℎ 𝑥, 𝑠 𝑥 = 0

Design variables 𝑥
Uncertain parameters 𝑢
Model outputs 𝑦 𝑥, 𝑢
Statistics of model 𝑠 𝑥

UQ

optimizer

hi-fi model

𝑓hi

ghi , hhi

u 𝑦hi

𝑥



Multifidelity OUU approach: Control variates

min
𝑥

𝑓 𝑥, 𝑠 𝑥

s.t. 𝑔 𝑥, 𝑠 𝑥 ≤ 0

ℎ 𝑥, 𝑠 𝑥 = 0

Design variables 𝑥
Uncertain parameters 𝑢
Model outputs 𝑦 𝑥, 𝑢
Statistics of model 𝑠 𝑥

UQ

optimizer

hi-fi model

𝑥
𝑓hi

ghi , hhi

u 𝑦hi

hi-fi
model

control 
variate

UQ

optimizer
𝑓hi

ghi , hhi

u 𝑦hi

Control variates: Exploit model correlation
• Estimate correlation between high- and low-fidelity models

𝑥

Leo Ng
PhD 2013



Problem setup

31

𝑀high 𝑥, 𝑈
𝑥

𝑈

𝐴

𝐵𝑀low 𝑥, 𝑈

design
variables

random
uncertain
parameters

random output of high-fidelity model

random output of low-fidelity model

min
𝑥

𝑓 𝑥, 𝑠𝐴 𝑥

s.t. 𝑔 𝑥, 𝑠𝐴 𝑥 ≤ 0

min
𝑥

𝑓 𝑥,  𝑠𝐴

s.t. 𝑔 𝑥,  𝑠𝐴 𝑥 ≤ 0
approximated by

𝑠𝐴 = statistics of 𝐴 (e.g., mean, variance)
 s𝐴 = estimator of 𝑠𝐴



Variance reduction with control variate
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• Regular MC estimator for 𝑠𝐴 = 𝔼 𝐴 using 𝑛 samples of 𝐴:

• Control variate (CV) estimator of 𝑠𝐴:

– Additional random variable 𝐵 with known 𝑠𝐵 = 𝔼 𝐵

• Minimize Var  𝑠𝐴 with respect to 𝛼
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Definitions:
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Low-fidelity model as control variate
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• Multifidelity estimator of 𝑠𝐴 based on control variate method:

– 𝐴 = random output of high-fidelity model

– 𝐵 = random output of low-fidelity model (𝑠𝐵 unknown)

• Using difference  𝑏𝑚 −  𝑏𝑛 as correction to  𝑎𝑛

• Leveraging correlation between 𝐴 and 𝐵

– Correlation captured in 𝛼

 𝑠𝐴,𝑝 =  𝑎𝑛 + 𝛼  𝑏𝑚 −  𝑏𝑛 with 𝑚 ≫ 𝑛

Var  𝑠𝐴,𝑝 =
𝜎𝐴

2 + 𝛼2𝜎𝐵
2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵

𝑛
−

𝛼2𝜎𝐵
2 − 2𝛼𝜌𝐴𝐵𝜎𝐴𝜎𝐵

𝑚

Definitions:

𝜎𝐴
2 = Var 𝐴

𝜎𝐵
2 = Var 𝐵

𝜌𝐴𝐵 = Corr 𝐴, 𝐵
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Model correlation over design space
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• At current design point 𝑥𝑘

– Define 𝐴 = 𝑀high 𝑥𝑘 , 𝑈

– Want to compute  𝑠𝐴 as estimator of 𝑠𝐴 = 𝔼 𝐴

• Previously visited design point 𝑥ℓ where ℓ < 𝑘

– Define surrogate as 𝐶 = 𝑀high 𝑥ℓ, 𝑈

– Reuse available data:  𝑠𝐶 as estimator of 𝑠𝐶 = 𝔼 𝐶 with error Var  𝑠𝐶

Simulation𝑥𝑘  𝑠𝐴 𝑥𝑘

Simulation𝑥𝑘−1  𝑠𝐴 𝑥𝑘−1

Simulation𝑥ℓ  𝑠𝐴 𝑥ℓ

⋮
optimization

progress

design variables estimators
⋮

• What if low-fidelity model unavailable?

– Use 𝑀high 𝑥 + Δ𝑥, 𝑈 as surrogate for 𝑀high 𝑥, 𝑈

Information 
Reuse 

Estimator



Aircraft conceptual design under uncertainty
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• Conceptual design of fuel efficient and quiet aircraft with 2030-2035 
technologies

• Model = TASOPT aircraft sizing and mission performance analysis code
(Drela 2010)

– Includes aerodynamics, structures, weights, propulsion, stability,
control, trajectory simulation

D8 aircraft concept
(Greitzer et al. 2010)



Aircraft conceptual design under uncertainty
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• 8 design variables:

– Wing geometry (aspect ratio, sweep, thicknesses), cruise lift coefficient, 
cruise lift distribution fractions, begin cruise altitude

• 19 random inputs representing uncertainties in technologies:

– Material properties, boundary layer ingestion, secondary weights, engine 
cycle, etc.

• Objective (formulated as mean)

– Payload fuel energy intensity (PFEI) [kJ/(kg km)]

• 4 constraints (formulated as mean + std ≤ 0)

– Field length, fuel volume, span length, top-of-climb angle

• Optimization loop: COBYLA constrained derivative-free solver (Powell 1994)

• Simulation loop: Fixed RMSE for estimators specified, number of samples 
allowed to vary



Aircraft conceptual design under uncertainty
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Total Computational Effort

Regular MC 1.1 × 106

Info Reuse 0.12 × 106 (-90%)

Variance reduction means significantly 
fewer samples for desired RMSE

Maintained at least 32 samples 
(computational effort = 64) to estimate 
𝜌𝐴𝐶 and 𝛾



Aircraft conceptual design under uncertainty
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• Study risk-performance trade-off by varying the weights on mean 
and std. dev. in the constraints and resolve optimization problem

• Information reuse estimator is advantageous when re-solving the 
optimization problem

– Reuse data from design points visited in previous optimization 
problem
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High-fidelity wing optimization

• Shape optimization of (roughly) Bombardier Q400 wing

– Free-form deformation geometry control (Kenway et al. 2010)

• Coupled aerostructural solver (Kennedy & Martins 2010)

– Aerodynamics: TriPan panel method

– Structures: Toolkit for the Analysis of Composite Structures (TACS)
finite element method
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Coarse Fine

Aerodynamic 
Panels

1000 2960

Structural 
d.o.f.

5624 14,288

Eval time 6 s 24 s



High-fidelity wing optimization
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• 46 design variables:

– 8 wing twist angles, 19 forward spar thicknesses, 19 aft spar thicknesses

• 7 random inputs:

– Take-off weight, Mach number, material properties (density, elastic 
modulus, Poisson ratio, yield stress), wing weight fraction

• Objective = drag (formulated as mean + 2 std)

• 4 nonlinear stress constraints (formulated as mean + 2 std ≤ 0)

• 36 linear geometry constraints (deterministic)

• Optimization loop:COBYLA constrained derivative-free solver (Powell 1994)

• Simulation loop: Fixed RMSE for estimators specified, number of samples 
allowed to vary



High-fidelity wing optimization

• Solved on 16-processor desktop 
machine

• Combined estimator enable OUU 
solution in reasonable turnaround 
time

• Regular Monte Carlo estimator 
would take about 3.2 months
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Computational 
Effort

Total Time 
(days)

Regular MC -- --

Info Reuse 7 × 104 13.4

Combined 5 × 104 9.7



Conclusions

Statistical and learning methods can improve our 
effectiveness in solving optimization problems,
by helping us exploit the availability of multiple models 
and multiple optimization solvers

• Automatically tailoring optimization solvers to 
problem structure

• Recognizing when a problem is similar to problems 
solved before

• Using multiple sources of information (including 
surrogate models, previously evaluated designs)
to accelerate optimization problem solution
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