

Phoenix Integration

2015 User Conference

April 15, 2015 Marina Del Rey, CA

Optimizing Constructability to Reduce the Cost of Wind Energy

Presenter:

Forest Flager, Ph.D.

Research Scientist, Stanford University

Agenda

- 1 Introduction
- 2 Optimization Method
- 3 Case Study Applications
- 4 Conclusions / Next Steps

Project Overview

Goal: Develop a design method to enable project stakeholders to quickly and accurately evaluate design alternatives in terms of capital cost and revenue potential.

- Scope: Turbine locations
 - Substation location(s)
 - Collection system layout
 - Access road layout

Optimizing Constructability to Reduce the Cost of Wind Energy

PHX 2015

3

Team Responsibilities

- Construction expertise and cost data
- Baseline infrastructure layouts
- Integration of construction costs
- Creation of optimization methods
- Turbine coordinates and wind data
- Land control and site constraints
- Owner cost information (e.g., turbines, O&M, PPA)
- Access to OpenWind software
- Energy capture modeling

Conventional Design Process

REVENUE

- Responsibility of owner / design consultant
- Typically performed early in the design process
- Automated iteration / optimization

Conventional Design Process

REVENUE

- Responsibility of owner / design consultant
- Typically performed early in the design process
- Automated iteration / optimization

CAPITAL COST

- Responsibility of contractor
- Typically performed during detailed design and/or tender
- Manual iteration

Agenda

- 1 Introduction
- **2** Optimization Method
- 3 Case Study Applications
- 4 Conclusions / Next Steps

TURBINE LAYOUT

- Layout constraints are modeled as GIS layers
- Site is rasterized to create a list of feasible turbine positions

INFRASTRUCTURE LAYOUT AND COSTING

- Road and collection systems are assigned unit costs
- Costs are modeled as GIS layers
- A* and Esau Williams used for layout of roads and collection system

TURBINE POSITION OPTIMIZATION

- System-level optimizer
- Objective: Minimize cost of energy
- Variables: Turbine positions (x,y)

SUBSTATION POSITION OPTIMIZATION

- Subsystem-level optimizer
- Objective: *Minimize* cost of energy
- Variables: Substation position(s)

Agenda

- 1 Introduction
- 2 Optimization Method
- **3** Case Study Applications
- 4 Conclusions / Next Steps

Case Study Overview

13

15 Apr 15

Name:	Bobcat Bluff	Roosevelt
Production Capacity:	150 MW	300 MW
Site Area (Acres):	14,000	62,000
Number Of Turbines:	100	150
Number Of Substations:	1	2
Optimizir	ng Constructability to Re Cost of Wind Energy	educe the PHX 2015

Bobcat Bluff: Site Conditions

Optimizing Constructability to Reduce the Cost of Wind Energy

PHX 2015

Bobcat Bluff: Site Conditions (cont.)

Bobcat Bluff: As Built

Bobcat Bluff: Optimized Turbines

Bobcat Bluff: Optimized Substation

Bobcat Bluff: Results

Design Alternative	Construction	Net Energy	Cost of Energy
	Cost (M USD)	(GWh)	(USD / MWh)
As Built	50.40	535.15	49.01
Optimized Turbine	-3.54	533.37	-1.80
Positions	(7.0%)		(3.7%)
Optimized Turbine +	-3.82	533.45	-2.00
Substation Positions	(7.6%)		(4.1%)

Roosevelt: Site Conditions

Optimizing Constructability to Reduce the Cost of Wind Energy

PHX 2015

Roosevelt: Site Conditions (cont.)

Roosevelt: As Built

15 Apr 15

Roosevelt: Optimized Turbines

Roosevelt Results

Design Alternative	Construction	Net Energy	Cost of Energy
	Cost (M USD)	(GWh)	(USD / MWh)
As Built	90.37	1450	36.28
Optimized Turbine	-6.90	1448	-2.20
Positions	(8.2%)		(6.4%)
Optimized Turbine + Substation Positions	-	-	-

Conclusions

- Significant savings in capital cost and reductions in cost of energy can be achieved by considering project constructability early in the design process
- Success of method is dependent on:
 - Early contractor involvement
 - Willingness to share data across project teams

Current and Future Work

Analysis:

- More accurate modeling of:
 - O&M costs
 - PPA pricing
 - Land lease costs
 - Electrical losses
- Better understand impact of grid size

Optimization:

- Turbine type, number and hub height
 - Crane travel path

Acknowledgements

- Todd Bell
- Tim Maag
- Ramon Iglesias
- Professor Martin Fischer
- Eric Hale
- Jared Kassebaum
- Nicolas Robinson

