Application of the ‘Federated and Executable Models’ MBSE Process to Airbus Orbital Servicing Missions

Phoenix Integration
2018 International Users‘ Conference
April 17-19, 2018
Annapolis, Maryland, USA
Airbus Orbital Servicing Missions

Active Debris Removal

Space Tug Geo-Servicing
Airbus Space Tug vehicle for new services in Geostationary orbit

- **Inspection:** external monitoring of the Satellite (e.g. camera) to check its status or its environment
- **Relocation:** tugging the Satellite to a different GEO orbital slot
- **Graveyarding:** tugging the Satellite to a graveyard orbit at the end of its lifetime
- **Inclination removal:** tugging the Satellite from an inclined orbit to a new requested inclination (e.g. 0°)
- **Refueling:** in-orbit refuel/refill Satellite’s tanks
- **Continuous SK:** ensuring full AOCS of composite <Satellite+Tug>, during n months
Airbus Space Tug vehicle for new services in Geostationary orbit
Objectives and definition of the MBSE process ‘Federated and Executable Models’

The overall ‘Federated and Executable Models’ MBSE process allows defining and validating system properties and architectures, and leads to consolidated system and architecture requirements.
Questions to be addressed by Systems Engineering to ensure consistent design
The system data are processed from mission requirements to system properties to system architectures to design

System properties. Solution free.
- What is the system boundary?
- What is the CONOPS?
- What are the main system capabilities?
- What are the system states and modes?
- What is the system mass? Dry mass, propellant mass?
- What are the main mission activities?
- What is the lighting conditions?
- What are the contact times to ground?
- What is the system mass?
- What are the trajectories, accelerations?
- What is the thrust?
- What are the product geometries?
- What are the lighting conditions?
- What are the contact times to ground?

System architectures. Development of solutions.
- What is the operational concept?
- What are the hazards and failure modes?
- What are the safety constraints?
- What is the product tree?
- What are the functional allocations?
- What are the system parameters?
- What are the system budgets?
- What is the data model?
- What is the system sizing?
- What are the system responses in scenarios?
- What are the costs?

Selection of technologies.
- What are the main mission activities?
- What is the thrust?
- What are the trajectories, accelerations?
- What is the system sizing?
- What are the system responses in scenarios?
- What are the costs?

System design
Main data models of the process and data flow

Logical Model
- Cameo SysML
- Describe logical prop. & architectures
 - System capabilities def.
 - Mission scenario analysis
 - System states and modes
 - Functions and Safety
 - Architectures

Physical Model
- RangeDB
- Describe physical prop. & architectures
 - Product Tree
 - System Budgets
 - System sizing
 - Physical architecture iterations

Geometrical / Dynamic Model

ModelCenter
- Analyse & Validate System
 - Parameter trends
 - Parameter coupling
 - Optimisation
 - Requirements verification

Domain Models
- Analysis Flows
- Generate physical data
- Data analysis
- Sensitivity, Optimization

Exchange of model data in standardized data flows
System Definition
The proposed modelling process addresses each aspect of the system definition.

“A system is an open set of complementary, interacting parts, with properties, capabilities and behaviours emerging, both from the parts and from their interactions, to synthesize a unified whole.”

Derek Hitchins (2007)
Systems Engineering, A 21st century systems methodology
Main objectives of the modelling process

- System boundary and context representation
- Mission representation with states and mission activities
- System representation with capabilities, modes and system activities
- System architectures: functional and physical
- System budgets (mass, propellant, power, energy, data link, data rate, …)
- System sizing (structure strength, solar array size, radiator size, …)
- System simulation in scenarios and sensitivity analysis
- System synthesis from the different descriptive models
Selected tooling environment for the process implementation
Rely on commercial tools except Airbus DS System Database RangeDB

<table>
<thead>
<tr>
<th>Data Models</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Model</td>
<td>RangeDB (Airbus)</td>
</tr>
<tr>
<td>Logical Model – SysML</td>
<td>Cameo Systems Modeler 18.5 (No Magic)</td>
</tr>
<tr>
<td>Analysis Flow for</td>
<td>ModelCenter 12.0 (Phoenix Integration)</td>
</tr>
<tr>
<td></td>
<td>MBSEPack (Phoenix Integration)</td>
</tr>
<tr>
<td>Dynamic model</td>
<td>Matlab R2015a (MathWorks)</td>
</tr>
<tr>
<td>Geometry model</td>
<td>CATIA v5 (Dassault Systèmes)</td>
</tr>
<tr>
<td>Mission model</td>
<td>STK 11 (AGI)</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td>ModelCenter 12.0 (Phoenix Integration)</td>
</tr>
<tr>
<td>Virtual Reality model</td>
<td>HTC Vive / Unity Version 5.4.2</td>
</tr>
<tr>
<td></td>
<td>Cameo Collaborator (Phoenix Integration)</td>
</tr>
</tbody>
</table>
Application of the MBSE process
‘Federated and Executable Models’

Descriptive models

Inter-operability of model federation

Model execution
System boundary and stakeholders
Definition of the system of interest and its context

What is the system of interest? What is the system context?
What are the mission scenarios? Which system capabilities and modes are requested to implement the mission?

Mission activities and System capabilities

System states

System capabilities (no functions at this stage)

Mission phases and activities

System modes
What are the system architectures and budgets needed to run the mission scenarios?

System architectures and budgets

Functional decomposition

Physical decomposition

System budgets
What are the analysis flows for system budgets and sizing?

System budgets and system sizing in RangeDB + ModelCenter
Automation and reuse of analysis flows in ModelCenter

Analysis flow in ModelCenter

Power / Energy budget
System inter-relation description through functional allocations

Allocation of functions to Hardware

Allocation of functions to Mission Activities

Allocation of functions to System Modes

Allocation of functions to System Hazards

How are the functions allocated to the other system representations?
Model Execution
System data are processed in ModelCenter from the system modes

What is the logical system behavior?

First Level Digital Twin
Model execution for getting system responses in various mission scenarios

What is the system response in a specific scenario?
Data exploration based on system response simulations
Check of requirements according to system performance

- Analysis of the system responses for different domains in the same mission context.
- Sensitivity analysis of the system w.r.t. environment changes.
- Check if the performance requirements are always fulfilled for different mission scenarios (regression test).
- Control of the margins on the performances defined in the requirements.
- Optimisation of equipment selection (e.g. analysis of Performance vs. Mass/Cost for single equipment).
System synthesis in an integrated VR environment
Synthesis of the model data in one digital twin environment

• Provide real time access to MBSE specification and product data (enable ad hoc reviews)

• Provide global view on functional system specification:
 → “walk through” mission phases, system modes, equipment states for each function level

• Vision: provide intent-based user interaction methods to allow fast response to complex questions on engineering data
How good are the architectures reflected in the requirements?

Transformation of models into requirements
Mapping of requirements to the model architectures with the ‘Satisfied by’ relationship
Benefits from modelling and simulating a system in the formulation phase

- To define coherent architectures (functional, physical, control, …)
- To manage the system complexity (scenario, dependencies, interfaces, behavior, responses)
- To generate budgets and validate them in various scenarios wrt requirements
- To validate the architectures w.r.t. properties in analyses and simulations
- To generate complete and consistent set of requirements
- To flow down the system definition to the disciplines
- To perform change impact analysis with the models
- To support the maintenance / evolution of complex systems
- To reduce the development risks with the use of consistent data for the different system analyses
- To automate generation of documentation from the models
- To support collaborative work for the engineering teams
E2E-PLM - Architecture for tools supporting system design at Airbus D&S
Toward increased engineering work efficiency with MBSE

4 main aspects of the MBSE process need further consideration:

1. Solve bottlenecks in data continuity → Collect and share data
2. Reuse data and processes → Develop libraries
3. Automate the processing of data → Prepare data for processing
4. Experiment early with the system → Synthesize and execute models