INTEGRATED MODEL-BASED SYSTEMS ENGINEERING (MBSE) APPLIED TO THE SIMULATION OF THE OSIRIS-REx MISSION

PHOENIX INTEGRATION
2018 International Users’ Conference
Annapolis, Maryland

Phathom Donald
Systems Engineer

© 2018 LOCKHEED MARTIN CORPORATION. ALL RIGHTS RESERVED
OSIRIS-REx MISSION OVERVIEW

Overview
Challenges
Objectives
Approach
Modeling
Simulating
Results
Reflections
Future Work

Video Credit: NASA/Goddard Space Flight Center

© 2018 LOCKHEED MARTIN CORPORATION. ALL RIGHTS RESERVED
OSIRIS-REx MISSION OPERATIONS CHALLENGES

- Need to avoid sun in the Thermal KOZ and in the +Z area of the spacecraft.
- Thermal constraints assert sun cannot be in Thermal KOZ past a certain duration threshold.
OBJECTIVES

Previous Operations Process

• Use of GNC prediction software that provides review of constraint violations.
• Run through SoftSim testbed.
• Cannot easily identify spacecraft constraint violations until mid-development.

New Operations Process Objectives

• Rapidly evaluate various trajectories for thermal constraint violations to identify preferred mission trajectory.
• Provide quicker, more flexible approach for assessing geometry constraints during early stages of mission planning.
• Efficiently track variables during proposed OSIRIS-REx trajectories.
The system architecture model captures:

- Structure
- Simulation Settings & Constraints
- Parametrics
- Simulation Sequence

Overview

Challenges

Objectives

Approach

Modeling

Simulating

Results

Reflections

Future Work
• The constraint block in the architecture model points to ModelCenter workflows using MBSE Analyzer.
• MBSE Analyzer within MBSE Pak solves the parametric diagram by linking it to the model in ModelCenter that consists of scripts and the STK component.
SYSTEMS TOOL KIT (STK)

- To express the Sun vector’s azimuth and elevation in reference to the Body Axes, the vector is projected onto the Body XY plane, creating the red “SunOnXY” vector.
- The angle between SunOnXY and Body X is the “SolarAzimuth”. The angle between SunOnXY and Body Z is the “SolarElevation”.

![Diagram of STK system with SunOnXY vector and angles labeled.](image)
The scenario results are linked to scripts defined in ModelCenter for determining any constraint violations.
SIMULATION PROCESS OVERVIEW

1. Enter simulation settings and constraints.

2. Initiate simulation from MBSE Analyzer.

3. Step through the mission simulation.

4. Point to external analysis tools.

5. Retrieve parameter values from STK.

6. Evaluate STK parameters; return results to MBSE Analyzer.

7. Display simulation results for each time step.
Simulation Results & Requirements

Overview
- System-level and subsystem-level states captured in value properties.
- Requirements verification captured in value properties.
- Values stored at each time step and displayed in Data Explorer.

Challenges

- Objectives
- Approach
- Modeling
- Simulating
- Results
- Reflections
- Future Work

Model Information

<table>
<thead>
<tr>
<th>Analysis ID</th>
<th>Manual Scroll</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Study Run</td>
<td>GetStates</td>
<td></td>
</tr>
<tr>
<td>Analysis Run</td>
<td>1</td>
</tr>
<tr>
<td>M.0.0.AnalysisStopTime (String)</td>
<td>13 Nov 20</td>
<td></td>
</tr>
<tr>
<td>M.0.0.ElapsedTimeSec (Integer)</td>
<td>0</td>
<td>3600</td>
<td>7200</td>
<td>10800</td>
<td>14400</td>
<td>18000</td>
<td>21600</td>
<td>25200</td>
<td>28800</td>
<td>32400</td>
<td>36000</td>
<td>39600</td>
<td>43200</td>
<td></td>
</tr>
<tr>
<td>M.0.0.IntervalNumber (Integer)</td>
<td>1</td>
<td>4200</td>
<td></td>
</tr>
<tr>
<td>M.0.0.IntervalSize (Integer)</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>M.0.0.OR齐 Count (Integer)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>M.0.0.ZK齐 Count (Integer)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.Concurrency (Boolean)</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>M.0.0.BatteryRange (km)</td>
<td>164,70742</td>
<td>164,42598</td>
<td>164,43444</td>
<td>163,86637</td>
<td>163,56959</td>
<td>163,36041</td>
<td>163,05255</td>
<td>162,75499</td>
<td>162,45637</td>
<td>162,15731</td>
<td>161,96190</td>
<td>161,64591</td>
<td>161,36526</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.SAP_Angle (degree angle)</td>
<td>21.87659</td>
<td>21.92135</td>
<td>22.11272</td>
<td>22.23064</td>
<td>22.34509</td>
<td>22.46612</td>
<td>22.59374</td>
<td>22.72239</td>
<td>22.84689</td>
<td>22.97649</td>
<td>23.09985</td>
<td>23.22095</td>
<td>23.34096</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.SolLat_Azimuth (degree angle)</td>
<td>174,93644</td>
<td>174,93658</td>
<td>174,93672</td>
<td>174,93687</td>
<td>174,93701</td>
<td>174,93716</td>
<td>174,93731</td>
<td>174,93745</td>
<td>174,93760</td>
<td>174,93774</td>
<td>174,93789</td>
<td>174,93804</td>
<td>174,93819</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.SolarElevation (degree angle)</td>
<td>-67,121,098</td>
<td>-66,988,847</td>
<td>-66,710,054</td>
<td>-66,431,447</td>
<td>-66,142,115</td>
<td>-65,839,151</td>
<td>-65,537,720</td>
<td>-65,224,674</td>
<td>-64,902,282</td>
<td>-64,570,806</td>
<td>-64,228,059</td>
<td>-63,865,902</td>
<td>-63,500,000</td>
<td>-63,112,500</td>
</tr>
<tr>
<td>M.0.0.0.0.0.SolarSun (degree angle)</td>
<td>156,443,004</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.0.0.0.Temperature (degree angle)</td>
<td>66,394,547</td>
<td>66,717,114</td>
<td>66,720,985</td>
<td>66,982,093</td>
<td>68,203,997</td>
<td>68,400,149</td>
<td>68,407,530</td>
<td>68,412,919</td>
<td>68,412,919</td>
<td>68,412,919</td>
<td>68,412,919</td>
<td>68,412,919</td>
<td>68,412,919</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.0.0.0.0.Temperature (degree angle)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>M.0.0.0.0.0.0.0.0.0.0.0.0.0.Temperature (degree angle)</td>
<td>43200</td>
<td></td>
</tr>
</tbody>
</table>

© 2018 LOCKHEED MARTIN CORPORATION. ALL RIGHTS RESERVED
REFLECTIONS

MBSE Advantages
• Formal, accurate system-level model capture.
• Early identification of requirements issues.
• Early, and on-going requirements and design verification.
• Improved impact analysis of requirements changes.
• Interconnectivity and reuse of existing models to support system design.
• Rapid re-evaluation when design changes occur.

Challenges Encountered
• Could not express time in UTCG without STK Object Model. (resolved in STK11)
• No requirements verification at each time step.
• Dot notation not allowed on parametric diagrams.

Lessons Learned
• The STK Programming Interface allows for great flexibility.
• Collaborating with vendor tech support is imperative.
FUTURE WORK

- Extend the system-level model
 - Include downlink duration and momentum buildup
- Extend and refine the behavioral and analysis models
 - Improve approach for plot generation

- Enable sensitivity analysis and design optimization
- Implement analysis integration for NASA’s *Lucy* mission
SIMULATION SETTINGS & THERMAL CONSTRAINTS

• Simulation time settings and system thermal constraints are captured in the system model.

• This facilitates requirement and constraint changes for efficient impact analysis.
Using MBSE Pak, value properties are bound to a constraint block that links to a model in ModelCenter that contains scripts and a STK component.

Inputs to STK:
- Analysis Start Time
- Analysis Stop Time
- Time Step Size

Outputs from STK:
- Solar Elevation
- Solar Azimuth
- Solar Range
- Earth Range
- Bennu Range
- SAP Angle
- SPE Angle

Outputs from ModelCenter:
- KOZ in Sun
- Duration of thermal violations
MAIN SIMULATION LOOP

Overview
Challenges
Objectives
Approach
Modeling
Simulating
Results
Reflections
Future Work

Update states and value properties

Loop Simulation from Analysis Start Time to Analysis Stop Time

Update time

© 2018 LOCKHEED MARTIN CORPORATION. ALL RIGHTS RESERVED