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Introduction 
• In 2014 the U.S. government took a firm stand to 

end the nation’s dependence on the Russian engines 

• Russian RD-180 powering  the Atlas V rocket 

 

• The president signed into law a measure requiring 
the U.S. Air Force to develop a domestic next-
generation rocket propulsion system by 2019 

 

• The system needs to accommodate multiple launch 
vehicles and missions while being focused on 
affordable development (low risk and cost to the 
taxpayer) 
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Cost and schedule challenges drive need for techniques that reduce the design 
cycle time and generate data for Informed decision-making earlier in the process 
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Design to Cost Implementation 
• Heritage development experience on the 

RS-68 program in the 1990’s illustrated 
that only an upfront design-to-cost (DTC) 
approach could reduce cost and meet the 
schedule demand for this activity 

 

• DTC uses cost and risk as inputs in the 
decision making and design process 

• Versus a design-to-requirements 
approach with cost as an output 

• Both unit cost (fabrication) and 
development cost (failures) are 
considered 

 

4 

RS-68 DTC approach attacked fail-fix costs with trades on performance and weight 
Allowed the system to stay within demonstrated cost and technical experience 
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DTC Results 

• By staying within existing bounds of experience:   

• Known failure modes eliminated 

• Design was simplified (80% reduction parts / 92% reduction touch labor) 

• Test program shortened (no new technology, processes, material) 
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DTC enabled RS-68 to go from design to certification in 4.7 years! 
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DTC in late 90’s 
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• RS-68 used a 3D solid model based virtual 
design method 

 

• All engineers worked from a common 3D 
model geometry 

 

• Sharing of information between IPT teams 
allowed for decisions to be made earlier in 
the design process and increased efficiency 

 

• However information was manually 
transmitted and checked and complex 
systems interaction were not immediately 
transparent  

Design impacts at the vehicle/customer level are not immediately 
transparent in this engine-only manual approach 
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• Boost Stage Engine Inputs: 

• Sea Level Thrust 

• Weight 

• Specific Impulse (ISP) 

• Nozzle exit area 

• Goal: Maximize payload capacity 
across the fleet 

Multiple vehicle configurations to consider 

Engine Design Impacts – Atlas V 

0-5 AJ-60A Solid Rocket Motors 

1-2 RL10 upper 

stage engines 

4 or 5 meter 

payload 

fairing 

Various orbits 

(LEO, SSO, 

GTO, etc.) 

Replacement Boost 

Stage Engine 
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Future State – Vulcan 

8 

Integrated modeling allows assessment of total system cost and risk 
during engine level design decision making process  

$ per SRB 

(engine thrust & T/W) 

Propellant load  

(boost engine burn duration & I
SP

) 

$ per USE 

Payload Capacity 

$/lb per orbit 

$ per engine reuse 

(engine design life) 
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DTC in the 2010’s 
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Sub-Systems

Executable 

System Model

Product Lifecycle 

Management

Discipline 

Analysis 1

Discipline 

Analysis X

Discipline 

Analysis 2

Collaboration, Coordination, 

Change Management
Model Libraries

Requirements 

Management

Quality and 

Verification 

Management

Automated Document Generation

Integrated 

Analysis Tool for 

Optimization

MBSE + MDAO enables rapid evaluation of a total system solution 

MDAO with ModelCenter 
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Benefits of MDAO approach 
• Larger, integrated model for the seamless sharing of information, reducing 

potential for handoff errors and decreasing design cycle  
 

• Rapid design space sweeps and multidisciplinary optimization 
 

• Built-in user documentation of the analysis workflow 
 

• This multi-platform approach to integrating disparate discipline tools 
permits SMEs to be responsible for the development, maintenance and 
validation of their own unique discipline-specific legacy codes 
 

• Avoids the problem of creating an unwieldy master integrated program 
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MDAO provides a process for rapid trades early in the design process to reduce 
cost, get information to the design team real-time, documents design decisions 
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MDAO model setup in ModelCenter® 
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ModelCenter Screenshot 

Phoenix’s ModelCenter® framework is enabling for MDAO implementation 
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AR1 Engine Design Approach 
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• AR’s engine solution is known as the AR1 

• Competing against Blue Origin’s BE-4 

• Engine operates under an oxygen-rich staged 
combustion thermodynamic cycle 

• The thermal-fluid performance modelled in a 
anchored, heritage Fortran code (EBAL) 

• Design optimization is performed both at the 
component level and on the system level with a 
global optimization 

• Thermodynamic and structural analyses are 
performed for each component 

• Physics-based models of all key system components: 

• Ducting, heat exchanger, turbomachinery, 
combustion devices, valves, and etc. 

 

 

AR1 builds on legacy design approaches, implements new manufacturing 
techniques for lower cost, and provides high performance via demo’d engine cycle  
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Launch Vehicle Response Surface Curves 
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LV Configuration Payload to 
GTO (lb) 

Generated payload RSC for each LV configuration speeds up 
execution time and trades 

Integrated mission analysis models & codes:  
Orbital mechanics, LV configuration sizing, 

Aerodynamics, trajectory optimization 
(engine throttling)  
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Engine Sizing in ModelCenter® 
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Design parameters that impact the engine can be “Flowed Up”  
showing the impact on the mission performance 
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AR1 Integrated Model Output 
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• Flow-down of goals and 
objectives from customer => 
AR derived requirements and 
appropriate figures of merit 

 

• AR1 sea-level thrust and 
chamber pressure were 
primary independent variables 
due to design constraints 

 

 

Vehicle mission analysis performed with emphasis on evaluating 
impact of engine technology choices 
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Visualized Solution – The AR1 

• Cycle: Ox-Rich Staged  
  Combustion 

• Propellant: Liquid oxygen and  
  RP-1 (kerosene) 

• Engines: 2 

• Thrust: 526,000 lbf  per engine
  1,052,000 lbf total 
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Configured to accommodate multiple 
applications and optimized for a fast-paced 

and affordable development 
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Conclusions 
• Nation is facing an urgent need to develop alternatives to foreign 

propulsion by 2019 
 

• MDAO was a key enabler to streamlining the design process in order to 
meet this aggressive design schedule 
 

• Design space assessment enabled by MDAO on AR1 would have been 
impractical to conduct with traditional sequential design techniques 
 

• MDAO on the AR1 provided critical guidance to inform program decision 
makers at key program design gates and accelerated maturation of the 
design 
 

• MDAO techniques have broad applicability and can have a similar impact on 
any engineering program 
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Questions ? 
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AR1 Engine Balance 
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• EBAL also has an integrated weight model and 
component library based upon legacy Aerojet 
Rocketdyne engines 

• Technology for Ox-rich staged combustion studied 
during Space Launch Initiative (SLI) 

• NASA and U.S. Department of Defense joint 
research and technology project to determine the 
requirements for a 2nd Generation Reusable 
Launch Vehicle  

• Rocketdyne RS-84 (2000-2005) 

• Reusable 

• Ox-rich staged combustion 

• Liquid Oxygen & Kerosene 

• 1,064 klbf sea level thrust (1,130 klbf vacuum)  

• 305 s Isp Sea level (324 s vacuum) 

 
 

 

 

Rocketdyne RS-84 ORSC Engine 


