Enterprise IT Architecture:

Key to Successful Application of Modeling and Simulation Based Systems Engineering on any Program

DEFENCE AND SPACE

Richard Strunz and Simon Krüger 05 October 2017

Table of Contents

Enterprise IT Architecture | General strategy

Enterprise IT Architecture | Application layer (Modelling and simulation Based Systems Engineering focus)

Enterprise IT Architecture | As an enabler for model-based strategies

Enterprise IT Architecture | General strategy

The general strategy we followed is a classical decomposition of an enterprise IT architecture

- The business layer reflect
 - our company business processes as well as
 - the Advanced Product Quality Planning framework.
- The data layer ensures a continuous data flow
 - to drive a risk-informed satisficed design decision-making,
 - to monitor and control variation during production, and
 - to enable condition based maintenance
- The **application layer** (enabling methods) enables our brilliant engineers
 - to execute the Design for Six Sigma / Robust Design strategy combining
 - Modelling and simulation Based Systems Engineering (MBSE) and
 - Process Integration and Design Optimization (PIDO) Satisficing
 - to implement a rigorous reliability and safety engineering management
- The technology layer ensure
 - Digital product and process data continuity using state-of-the-art software and
 - Industrial Internet of Things technology

AIRBUS

Enterprise IT Architecture | Application layer (MBSE focus) (1/6)

Use of System Engineering Process at each system decomposition level

- Requirement Analysis
- Functional Analysis
- Physical Solution
- Tradeoffs
- Documentation

Enterprise IT Architecture | Application layer (MBSE focus) (2/6)

Use of System Engineering Process at each system decomposition level

- Requirement Analysis
 - Requirements may be classified into ...

- and **analyzed by applying ontologies** in the (model-based) requirements engineering process.

Enterprise IT Architecture | Application layer (MBSE focus) (3/6)

Use of System Engineering Process at each system decomposition level

- Requirement Analysis
- Functional Analysis
 - using the Function Analysis System Technique (FAST)
 - To provide directed thrust
 - To condition hardware
 - To start operation
 - To generate thrust
 - To direct thrust
 - To stop operation

External I/F Resources -----**Functional** State/Mode

PTC Integrity Modeler

AIRBUS

Enterprise IT Architecture | Application layer (MBSE focus) (4/6)

Use of System Engineering Process at each system decomposition level

- Requirement Analysis
- Functional Analysis
- Physical Solution

Enterprise IT Architecture | Application layer (MBSE focus) (5/6)

Use of System Engineering Process at each system decomposition level

- Requirement Analysis
- Functional Analysis
- Physical Solution
- Tradeoffs (Normative-target based)
 - Performance
 - Reliability-as-an-independent-variable
 - Cost-as-an-independent-variable

Physical Hierarchy

Enterprise IT Architecture | Application layer (MBSE focus) (6/6)

Use of System Engineering Process at each system decomposition level

- Requirement Analysis
- Functional Analysis
- Physical Solution
- Tradeoffs
- Documentation

in Functional Architecture

(S) + accelerate hot gases

AIRBUS

Enterprise IT Architecture | Application layer (I/F of MBSE with MBE)

MBSE connects with Domain Engineering in the model-based requirement engineering or design verification process

Enterprise IT Architecture | As an enabler for model-based strategies

Thank you

