

CAD-Based Design Optimization of a Race Car Front Wing

No consensus in Formula 1 on a good front wing design

- Aerodynamics are critical to the performance
- The front wing is responsible for about a third of the downforce of the car
- Complex designs but no consensus
- Optimal design has not yet been identified!

Simplifying the design problem

- Wing twist is a variable with great impact on performance
- Can be used to control which part of the wing generates downforce
- Enables answering a fundamental question about the design of a front wing - Is it better to have a larger angle of attack at the root or tip?
- Let's find out using ModelCenter®!

Virtual test rig

- Simplified Formula 1 Car with a twosection front wing
- Only elements sufficient to model the effect of twist are included
- Root and tip angles of attack of the rear section are exposed as variables

P®INTWISE

Generic method for lofting a 3d shape

- Cross section data is specified in Excel®
- A macro lofts the cross sections in Catia $\ensuremath{\mathbb{R}}$
- Can be re-used for any 3d shape that can be specified as a set of cross sections

Mesh Generation: Anisotropic Surface Meshing

- Pointwise® used to generate surface and volume meshes
- Boundary-conforming, advancing front surface mesh consisting of all triangular elements
- Anisotropically stretched, rightangled triangular elements used to accurately resolve areas of high curvature

Mesh Generation: Hybrid Viscous Volume Meshing

- Vehicle isolated in a hybrid prism-tet region to minimize mesh-solution variability during optimization
- Static farfield consisted of all hexahedral elements
- Anisotropic tetrahedral extrusion (T-Rex) algorithm used to automatically generate prismatic boundary layer region and transition to an isotropic tetrahedral core

PINTWISE

Mesh Generation: Automated Remeshing

- Analytic geometry (NURBS) and surface mesh share identical topologies
- UV parameter mapping of baseline mesh to geometry
- Pointwise's Glyph scripting language used geometry and mesh associativity to automate remeshing for each design iteration

CFD setup

- Evaluated at 100 mpg
- Moving floor and spinning wheel
- Computed using AcuSolve®
- 6-8 hours computation time on a high spec laptop

Integrated Workflow

- All the tools are integrated into a fully automated workflow using ModelCenter®
- Enables design exploration
 - Trade studies
 - Optimization

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

- Studies were performed on an adhoc cluster using available laptops
- Only one Catia® license required waiting for concurrent requests

Identifying a region of interest

- Initial parametric study varied the angle of attack on an untwisted wing
- A region of interest was identified and used to define the bounds for the next study

Understanding the results

 ModelCenter® was used to visualize the results

e Chart	Help	udy - Data E																		0	
	Add View - Leger		Plug-Ins M			input		1		valid outpu	t			invalid	output			r	modified value		
NUAL SCR		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
NOAL JUN	16	24	20	24	28	32	16	20	24	28	32	16	20	28	32	16	20	24	28	32	
	16 -50.04	24 -105.058	16 -62.7205	16 -85.8212	16 -144.314	16 -147.798	20 -48.7066	20 -91.4495	20	20	20 -151.952	24 -60.5787	24 -113.206	24	24 -177.003	28 -103.458	28 -130.629	28 -141.86	28	28 -103.458	
	114.402	128.04	113.469	117.291	127.814	137.853	112.742	113.823	110.446	123.414	136.139	113.957	123.656	122.182	137.282	121.039	119.706	125.703	132.332	121.039	
			G																		

Understanding the results

 Trade study shows higher values of downforce are generated with a higher angle of attack at the tip of the wing

Streamlines from best design

Velocity profile from best design

Velocity profile from best design

Next Steps

- Continue with more complex geometry
- Consider the effects of the aerodynamics of the whole car
- Integrate with other engineering disciplines
 - Structures
 - Propulsion
 - Dynamics

