A Model-Based Systems Engineering (MBSE) Approach to the Design & Optimization of Phased Array Antenna Systems

Northrop Grumman Baltimore, MD

Phoenix Integration Webinar

John Hodge Senior Principal RF Engineer 05/13/21

Northrop Grumman Today

Motivation

NORTHROP GRUMMAN

Motivation (Cont.)

Legacy Solutions:

- Phased array antenna sensor systems used for wireless communications, radar, and electronic warfare
- SysML descriptive architecture models
- > Disparate engineering domain analytical models

Challenges:

- Meet specified performance within size, weight, power, cooling (SWaP-C), and cost constraints
- Increasing system complexity as phased array antennas become increasing digital and multifunction
- Disparate set of engineering modeling & simulation tools across domains and disciplines

Our Solution: An integrated MBSE approach to

the design & optimization of phased arrays

- SysML model captures system arch & reqs
- Multi-domain, physics-based performance analysis & automated workflows
- Digital twin for a model-based enterprise

NORTHROP GRUMMAN

Outline

Digital Transformation

Legacy Engineering Processes

Digital Engineering Processes

Model-Based

Digital Twin & Digital Thread

MDAO system analysis

Reference architectures

**Multidisciplinary Design, Analysis, and Optimization (MDAO)* Distribution Statement A: Approved for Public Release: Distribution is Unlimited: #20-2203 Dated 11/17/2020

Engineering Workflow Accelerated by MBSE

Model Based Engineering is the part of Digital Transformation by which optimizations are resultant of models and simulation applications.

NORTHROP GRUMMAN

Digital Twin

Digital Twin Benefits

- Facilitates early discovery of performance issues
- Enables product
 optimization
- Supports personnel
 efficiency
- Rapidly evaluates system performance in everchanging environments
- Helps to identify future
 business opportunities

MBSE enables digital twin development through modeling and simulation applications

Integrated Model Framework

ModelCenter MBSE Links SysML Descriptive Models to Analytical Models

NORTHROP

GRUMMAN

Phased Array Antenna Systems

Dynamic Array Beam Steering Achieved Via Controlling Phase At Each Radiating Site

Distribution Statement A: Approved for Public Release; Distribution is Unlimited; #20-2203 Dated 11/17/2020

NORTHROP

GRUMMAN

Phased Array Antenna System Block Diagram

Complex system with many subsystem and component interactions

Scalable Digital AESA Architecture

NORTHROP GRUMMAN

Typical Phased Array Antenna Requirements

Performance

- Frequency Bandwidth (BW)
 - Operational
 - Instantaneous (IBW)
- Effective Isotropic Radiated Power (EIRP)
 - Aperture Gain
 - Side-lobe levels
 - Transmit Power
- Receive Sensitivity or G/T
 - Noise Figure
 - Linearity
- Aperture Efficiency
- Polarization
- Scan Volume
 - Scan Loss
- Beamwidth (Az/EI)
- Scan Rate
- # of Simultaneous Tx/Rx Beams

Constraints

- Size
 - Height
- Area
- Weight
- Power
- Average
- Peak
- Thermal
- Environmental
- Shock
- Vibration
- Radiation
- Etc.

Power-aperture trade to meet EIRP or sensitivity drives array architecture

Capture Performance and SWaP-C Requirements in SysML

NORTHROP

GRUMMAN

Requirements linked to provide traceability; Verified using integrated analytical models

Requirements Drive RF Front-End Architecture

PUMA [1]

Patch / Stacked Patch

Waveguide / Slot

TCDA [2]

Planar-Fed Folded Notch (PFFN)

NORTHROP GRUMMAN

Stepped Notch / Vivaldi

Scalable tile-based building blocks: Choose radiating element architecture based on bandwidth, scan, power handling, and height requirements

[1] PUMA: Planar Ultrawideband Modular Array (Holland, 2012); [2] TCDA: Tight Coupled Dipole Array (Papantonis, 2016) Distribution Statement A: Approved for Public Release; Distribution is Unlimited; #20-2203 Dated 11/17/2020

Handling

Power

Capture Phased Array Architecture Using SysML Block Definition Diagram (BDD)

NORTHROP

GRUMMAN

Each descriptive block capture interfaces and internal components for each subsystem; Reference architecture customized to mission needs

Increasing Levels of Fidelity Through the Antenna Design Process

NORTHROP

GRUMMAN

Installed Array Performance Using FEKO EM Solver

NORTHROP GRUMMAN

Predict High-Fidelity Installed Antenna Radiation Patterns Using Full-Wave EM Solver to Inform System Design Decisions

System Design & Optimization

Use ModelCenter to Perform Parametric Performance vs. SWaP-C Trade Study Analysis

Objective: Discover best system design and phased array architecture for a wireless communication system to achieve required signal-to-ratio (SNR) at receiver

Inputs:

- Frequency
- Bandwidth
- Array Grid
- Amplifier Power
 Per Element
- Antenna Scan Angle
- # of Tx Beams
- Required SNR

Outputs:

- SNR at Receiver
- Link Margin
- Antenna EIRP
- Az/El Beamwidth
- Size
- Weight
- Prime Power
- Power Density
- Cost

NORTHROP

GRUMMAN

Power-Aperture Trade Study to Satisfy Required Communications Link SNR Margin using ModelCenter

NORTHROP

GRUMMAN

Distribution Statement A: Approved for Public Release; Distribution is Unlimited; #20-2203 Dated 11/17/2020

Understand how increasing array size drives EIRP, prime GRUMMAN power, weight, and SNR link margin using ModelCenter

Model sensitivity of input design parameters on system KPPs and SWaP-C

Parametric trade study using design of experiment (DOE) tool simulates 630 system configurations

	I Dimensions	Constraints			Nx vs. trmPout_dBW vs. freq_GHz
🛱 DOE Tool – 🗆 X	✓ Constraints	Use this dialog to specify your requir	ements. Drag the sliders to filter out undesirable	e designs.	
favorites list 🗸 🎝 🕹	* Objectives	freq_GHz	1.00000	40.0000	
Variables Design Table	M Series	trmPout_dBW	1.00000	10.0000	
Design Variables	L. Aves				
* Name Values	≡ Legend	Nx	4.00000	72.0000	
Model.Matlab.tmPout_dBW Values: 1,2,5,7,10 ♥ Model.Matlab.treg_GHz Values: 1,2,4,6,8,10,12,15,18,22,28,32, ♥ Model.Matlab.Nx Values: 4,3,16,32,40,48,56,64,72		EIRP_dBW	20.7271	79.9380	
		Power_Density_per_site_Win2	0.0360981	458.780 50	
		Array_Cost_USD	40.0000	518400 50000	
Design: Parameter Scan 🗸 Num levels:		Array_Weight_lbs	0.112500	58320.0	
Responses → Model.Matlab.EIRP_dBW		Prime_Power_KVA	0.0769343	198.000	
Model Matlab Power_Density_per_site_Win2 Model Matlab Array Cost_USD Model Matlab Array Weight lbs		SNR_dB	-128.026	61.0094 61.0094	
Model.Matlab.Prime_Power_KVA v		margin_SNR_dB	0 -138.026	51.0094 51.0094 Č	
Counter Variable:		Gt_dBi	10.6962	35.8017	s Io
		Beamwidth_az_deg	1.41648	25.4966	
Validate All Resume Run Help		Lx_m	0.0150000	10.8000 5	2

Each point is an evaluated system configuration; Gray dots shaded out because they do not meet system requirements and constraints

Color shading used to identify architecture configurations with lowest power, weight, and cost

NORTHROP

GRUMMAN

NORTHROP Mapping design inputs to key performance parameter (KPP) outputs to understand key relationships in data

GRUMMAN

Distribution Statement A: Approved for Public Release: Distribution is Unlimited: #20-2203 Dated 11/17/2020

Scatter Matrix Visualizes Trade Study Results and Complex System Interactions

NORTHROP

GRUMMAN

Visualize Relationship Between All Input and Output Design Variables

GRUMMAN Built-in Optimization Tools Help Discover Best Design

5	Optimization Tool 13.5.52183					-	[-	×
fa	vorites list							~ 4	• >
Obje	ective Definition								
+=	Objective		Value	We	ight Goal				^
-	Model.Matlab.Array_Cost_USD			2780.61	1 minimiz	e			-
*	Model.Matlab.Array_Weight_lbs			71.8865	1 minimiz	e			
*	Model.Matlab.Prime_Power_kVA			2.60227	10 minimiz	e			~
	< .								>
	Constraint			Value	Lower	r Bound	Upper	Bound	_
	Model.Matlab.margin_SNR_dB			0	.06753	0			
	Model.Matlab.Beamwidth_az_deg				9.2715				10
	Model.Matlab.Lx_m			0	.37917				1
Des	ign Variables								
**	Design Variable	Туре	Value	Start Value (Explicit value	e) Lower Bour	nd Upper Bo	und	Edit	^
	Model.Matlab.freq_GHz	continuous	4.3515625	1	0	1	40		Í.
	Model.Matlab.Nx	continuous	10.5390625		8	4	128		
	Model.Matlab.tmPout_dBW	continuous	7.505664		5	0.1	10		
Algo	vrithm						_		
De	sign Explorer					~	. (Choose	
Stat	US								
				Elap	sed Time: 00	01:33	Vie	w Outp	ut
							s	how Mo	ore
A	dd to Model		Res	ume	Run	Options •	H	lelp	•

Best Design Run Number 101 Objective(s) Name (1* (Model.Matlab.Array_Weight_Ibs)) + (10 * (Model Constraint(s) Name Value Model.Matlab.margin_SNR_dB 0.06753 Model.Matlab.Beamwidth_az_deg 9.2715 Model.Matlab.Lx_m 0.37917

NORTHROP

Name	Start Value	Value
Model.Matlab.freq_GHz	10	4.35156
Model.Matlab.Nx	8	10.5391
Model.Matlab.trmPout dBW	5	7.50566

Set to satisfy required link margin while minimizing cost, weight, and power

NORTHROP GRUMMAN

Path Forward

- Broaden MBSE adoption and digital engineering across the enterprise
- Continue to integrate models into unified digital twin using ModelCenter
- Directly integrate CAD models with descriptive and analytical models
- Deepen MBSE integration with product lifecycle management (PLM) systems

Help our customers adopt and transition to MBSE to increase system performance while reducing cost, schedule, and risk

Summary

- Demonstrated a MBSE approach to the design & optimization of next-generation phased arrays
- Developed innovative integrated phased array system model to perform rapid multi-domain trades
- <u>MBSE</u>: Connect systems architecture models with engineering analyses
- Using <u>ModelCenter</u> to automate workflows and link SysML models to analytical performance models
- <u>MDAO</u>: Calculate system performance, check requirements, and perform design trade-offs

Flexible model for evaluating trade studies, performing system optimization, and system verification for phased array sensor systems

If you enjoyed today's talk

My 2018 webinar is available on the Phoenix Integration website

Acknowledgements

- Phoenix Integration Staff
- My NGC Mentors and Co-workers

Thank You!

Contact: john.hodge@ngc.com

NORTHROP GRUMMAN

Providing Virtual Integration of Systems for Earlier Verification & Validation (V&V)

NORTHROP

GRUMMAN