

A Structured Approach to Integration

1

Cory Kinsel Engineer Systems Architect

8/4/2021

Background

Cory Kinsel, Engineer Systems Architect Northrop Grumman Space Systems

- Member of MBSE Solutions Team
 - Supported 6+ Programs/Teams
- Trained Engineers in MBSE Methodology and Tools
- 5+ years of Modeling and Simulation Experience
- B.S. AAE from Purdue University

What does it mean to integrate?

Definitions

- Integrate
 - to form, coordinate, or blend into a functioning or unified whole
- Interface
 - the place at which independent and often unrelated systems meet and act on or communicate with each other
- Structured Approach
 - a process oriented approach, aiming to break a large complex problem into a series of smaller, more manageable pieces
- Class of Information
 - a way of collecting or organizing together similar types of information

DISCOVERY: What problem are we trying to solve?

Given:

1. Two Independent Model types need to exchange data

2. ModelCenter enables this data exchange

Problem:

1. How do I consistently enable an integration and ensure repeated success?

2. How do I enable a team of engineers to execute this process, minimizing the training time to execute?

Solution:

Create a process that captures each class of information independently, allowing for focused development

Step 1: Create Representation of Analysis

- · Identify the engineering work to be executed
 - What is the goal of this work?
 - What resulting decisions need to be made?
 - How does this analysis tie into other engineering work?
 - What requirements are driving this effort?

Step 2: Identify the Independent Models

- Who are the stakeholders in this integration process?
 - Who is needing the decisions from the analysis?
 - Who is performing the analytic work?
- Are there existing analytic models (Excel, Matlab, CAD, etc)?
- Is there any new development that needs to occur?

Step 3: Identify the Interfaces

- For analytic models:
 - What are the Input/Output Parameters? Parameter Dimensions? Units?
- For descriptive models:
 - What classes of information need to be captured? Dimensions? Units?
 - Givens
 - Requirement Parameters
 - Assumptions
 - Results from other Analyses
 - Architecture Constraints
 - Results

Step 4: Integrate the Interfaces

- Mapping the data across the models
- Process checkpoint
 - If steps 1-3 were completed successfully, this should be seamless
 - Extra Parameters, non-successful integration indicate missed items

Let's see how this process looks

The Example

- Phoenix Integration's Turbofan Demonstration Exercise
 - Given Requirements for:
 - Geometry (Bypass Ratio)
 - Performance (TSFC, Specific Thrust, Conditions)
 - Find: A feasible solution for an engine design to be able to write requirements against specific component performance

The Template

- Package structure is copied and pasted per analysis
- Contains:
 - Package structure to organize data
 - Preconfigured views to capture data
 - Development page to focus engineering effort

NORTHROP GRUMMAN

The Development Page

Step 1: Create Representation of Analysis

Capture:

- Goal of Analysis
 - "The goal of this analysis is to find a valid solution point to write requirements to be levied against specific components of the turbofan."
- Traceability to Requirements
 - The on-design conditions shall be evaluated at M = 0.8, Ta = 217 K, Pa = 18750 Pa.
 - The specific thrust must be at least 120.1 N-s/kg
 - The TSFC of the turbofan must be no more than 1.56E-5 kg/N/s.

Step 2: Identify the Independent Models

- Who are the stakeholders in this integration process?
 - Systems Engineering needs to breakdown system level requirements
 - Propulsion Engineering has design and part selection authority
- Are there existing analytic models (Excel, Matlab, CAD, etc)?
 - 3 models (Core Performance, Nozzle Performance, Overall Performance)
 - Each has impact on future lower-level requirements
- Is there any new development that needs to occur?
 - May need to create a workflow that automates these calculations

Step 3: Identify the Interfaces

- Capture inputs and outputs of analytic models
- Identify architecture components as source of values
 - Requirements
 - Assumptions
 - Known Constants
 - Component Performance
- Ensure matching Dimensions and Units

#	Name	Documentation	Туре	Units
1	BPR		V Real	
2	□ Cp		V Real	
3	🔲 Mach		V Real	
			- 0 · 0 ·	

Step 4a: Starting the Integration

17

Step 4b: Integrating the Results

18

Step 4c: Integrate the Inputs

NORTHROP GRUMMAN

Post-Analysis Activities

After performing analysis:

- Write requirements against results
 - Fan Pressure Ratio Limit
 - Burner Pressure Ratio Limit
 - Compressor Pressure Ratio Limit
 - Update Thrust, TSFC
- Trace authored requirements
- Allocate expected values to components
- Allocate requirements to components

In Summary,

- There are many classes of information regarding any integration
- A structured approach separates out each class of information
- This separation enables effective means of communicating and coordinating two or more independent models (systems)
- Integrating these two modeling spaces yields one true development story

What do you think?

NORTHROP GRUMMAN