Modeling, Simulation, and Analysis Support for Mission Engineering at SAIC

16 November 2021 Jay Farrell, Ph.D.

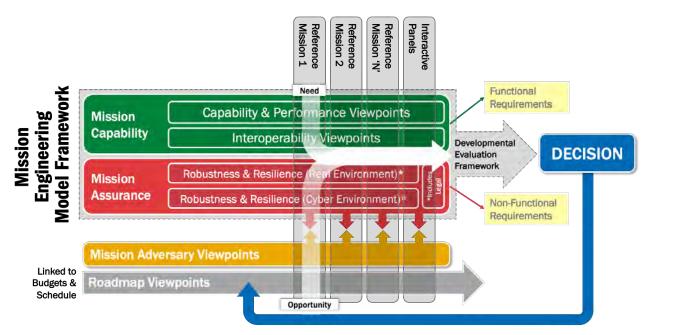
Approved for public release

Purpose

- Outline how SAIC uses Modeling, Simulation, and Analysis (MS&A) as part of its Mission Engineering (ME) efforts
- List and illustrate some considerations in implementing MS&A for ME

Also...

• Describe some lessons learned and tips in applying Phoenix Integration's ModelCenter software for such efforts



Topics

Brief SAIC overview

- Who we are
- MS&A and ME offerings
- Example using our methods
- Some Considerations for using MS&A within Mission Engineering
 - Accessibility
 - Compatibility
 - Applicability
 - Innovation

For each Consideration: Factors and challenges One or more examples

Disclaimers

- Discussion of specific vendor products does not imply endorsement, by SAIC, as the sole approach for all customer use cases
- No classified material in this presentation

SAIC at a Glance

DOMINANT POSITION IN FASTEST GROWING SEGMENTS: SPACE AND DIGITAL TRANSFORMATION

SAIC Digital Engineering Transforms Mission Success

MBSE

 Developing and using SysML models that serve as the authoritative source for system design and the "hub" for the rest of the digital thread

DE Ecosystems

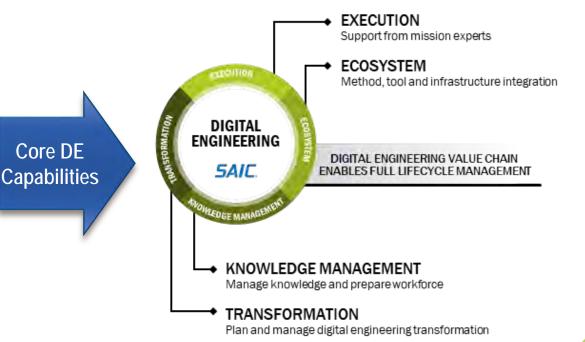
 Deploying, configuring, and maintaining the underlying infrastructure with the required performance, scalability, security, and accessibility to run the integrated toolchains needed to implement our DE capabilities in a collaborative integrated data environment

Digital Thread

• Integrating engineering solutions, composed as a set of models and data, where information is digitally linked across tools and domains to ensure traceability, completeness, and design consistency across the entire solution

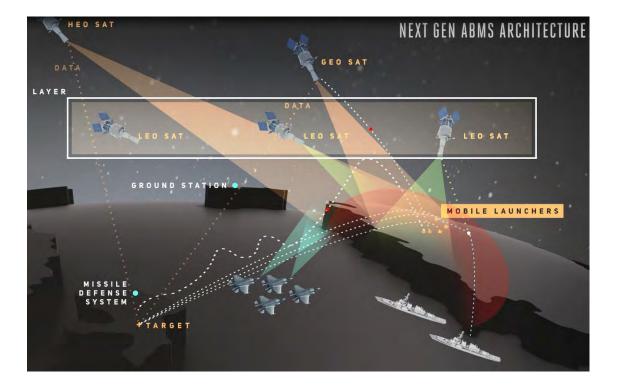
Digital Twin Frameworks

• Creating digitally linked sets of physics-based simulations that answer high consequence, high probability performance questions, based on field data input, over the life of its corresponding physical twin


Tool Federation (Semantic Broker)

 Using domain ontologies to integrate data across disparate tool chains that otherwise would not integrate to ensure critical Mission Engineering data can persist when applications are no longer available

Leveraging \$15M+ SAIC investments in **Digital Engineering**



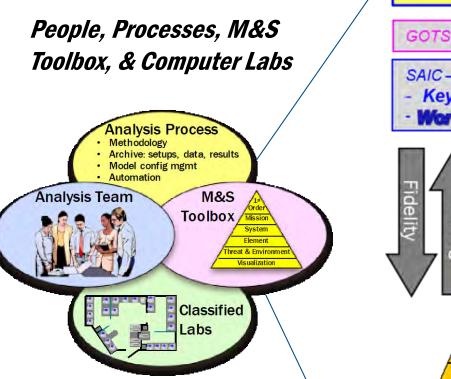
Core DE

Threat-Based Analysis and Mission Engineering

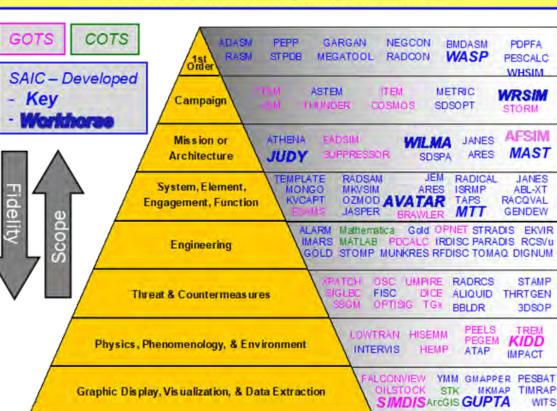
- SAIC uses proven (>35 years) quick response M&S
 - Examine existing and future force design performance against present and potential threat system capabilities
 - Customers \rightarrow MDA, JIAMDO, DARPA, SSC, USAFE, COCOMs, DTRA, OSD, JCS, Services, DHS, etc.
 - Mission Engineering: Complete End-to-End Kill Chain
 - Hypersonics, Space, C4ISR, IAMD, CUAS, Multi-Domain Ops
- Analysis determines performance gaps and drivers
 - Mission dictates future force design
- Rapid turnaround allows us to analyze many threat parameters and force designs
 - Compare, identify and optimize force designs using appropriate metrics
 - Agility to adapt tools to customer questions and needs
- SAIC delivers force design analysis and solutions
 - World-class quick response modeling, simulation and analysis capability
 - Proven experience, knowledge and capabilities

Advanced Concept Experience

- Airborne Comm Node
- Global Hawk & Dark Star
- JSTARS, Predator
- Counter sUAV
- Hyper/Supersonic CMs


Airborne Weapons Layer (AWL)

SAIC


- Air Defense Initiative
- Airborne EA AoA
- C-Hypersonics AoA
- Space SA, SC

Threat-Based Digital Force Design Enables Speed to Mission

Example: M&S Suite Development and Analysis Support

End-to-end simulation covers difficult- or impossible-to-test scenarios

WILMA-Suite IAMD/C4ISR Toolbox

Maintain Large Suite Of M&S Tools Support Customer, With These Key Models:

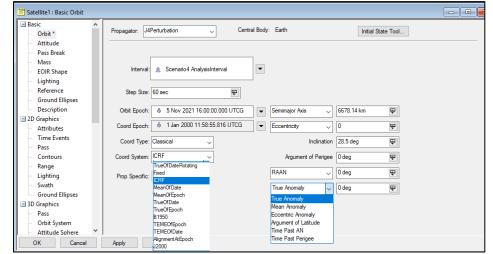
- WILMA → Cornerstone For Med-Fi, Quick-Turn BMDS Effectiveness
- JUDY → Evaluation Of Air Defense/Cruise Missile Defense Advanced Concepts
- AVATAR → Hi-Fi Simulation For 1–on–1 Interceptor Engagement Analysis
- WRSIM → Examine BMDS performance Within The Raid Context

Analysis needs drive model choices

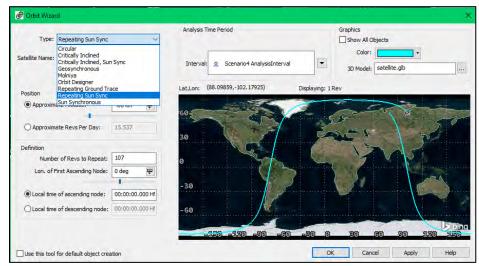
Some Considerations for MS&A in Mission Engineering

- **1.** Accessibility of Tools for Non-Experts
 - Can we apply models across the engineering lifecycle if only a few people can use the tools?
- 2. Compatibility of Key Simulations for Mission Engineering - Can industry-standard tools fulfill mission engineering requirements?
- **3.** Applicability of Models within Mission Engineering - What are some ways to integrate detailed models for ME?
- **4.** Innovation in a Process-Oriented Enterprise
 - How can we enforce process rigor but still foster innovation?

Consideration 1: Accessibility of Tools for Non-Experts


Aspiration: Make tools accessible, to the workforce, across the engineering lifecycle

Difficulties


- Some tools require considerable training and experience for effective use
- Available workers lack background and skills
 - Domain knowledge
 - Coding
- Insufficient time and budget to learn and do

Approaches

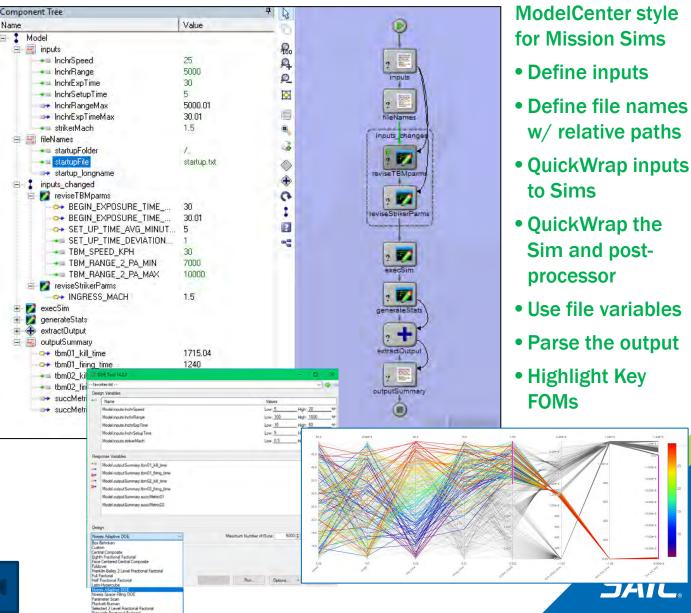
- Investment in user interfaces
- Workflow tool with U/I's
- AI/ML-empowered tools

Good but hard for non-experts: STK Orbit Parameter GUI

Refined, user-friendly interface: STK Orbit Wizard

SAIC

ModelCenter as a User Interface (U/I)

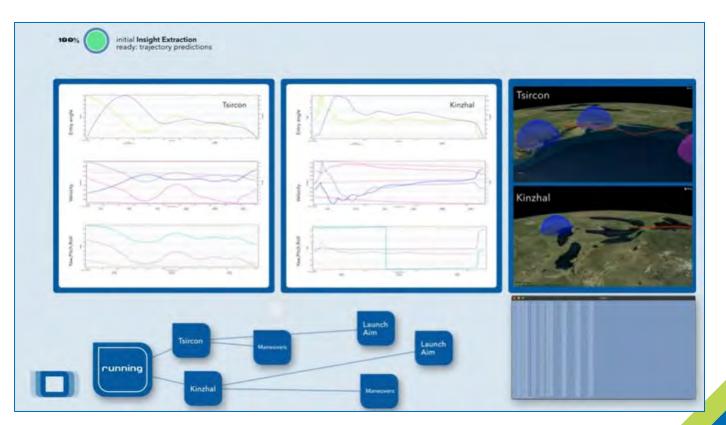

- Considerable capability in software with lacking or complex U/l's
- ModelCenter provides a unified U/I for
 - Legacy, command line tools
 - Mission Simulations (e.g., AFSIM)
 - Excel, Matlab, STK, other COTS tools
- Enables a workflow designer to limit variables exposed to end users
- Relatively quick way to provide a U/I
- Added benefit: access to ORSA, optimization, and prob. analysis tools

Result

"You can do in a few minutes what would have taken me weeks..."

Excerpts of AFSIM-RAVE-ModelCenter Approved for public release

JAIL


MSBAI's GURU: AI/ML-enabled U/I for SAIC's AVATAR

Problem

- Engineering-level simulations are complex
 - Many inter-dependent variables
 - Much experience and expertise often needed to create meaningful simulations
 - Can take experts a long time to build new models
- Simulation SMEs often not available
- We often cannot wait for training Solution
- Use AI/ML to run numerous cases on HPC
- Create a U/I that assists in defining meaningful cases

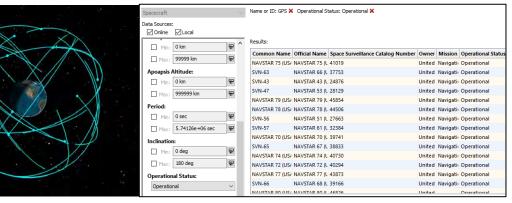
Result

Lowers barriers for non-SME users

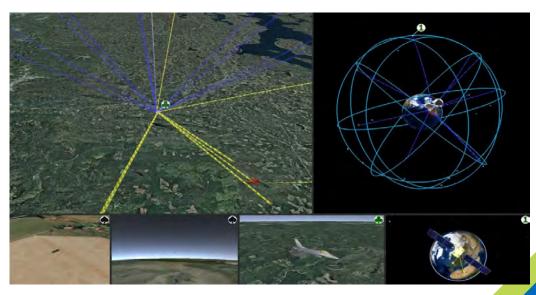
https://exhibits.iitsec.org/2021/public/eBooth.aspx?IndexInList=165&FromPage= Exhibitors.aspx&ParentBoothID=&ListByBooth=true&BoothID=186860&Nav=False

Consideration 2: Compatibility of Simulations for ME

Aspiration: Use industry-standard tools and mission simulations together seamlessly


Difficulties

- Some tools don't do mission simulation;
 - Do not describe behaviors and interactions
- No simple way to integrate analysis and mission tools for all models and functions

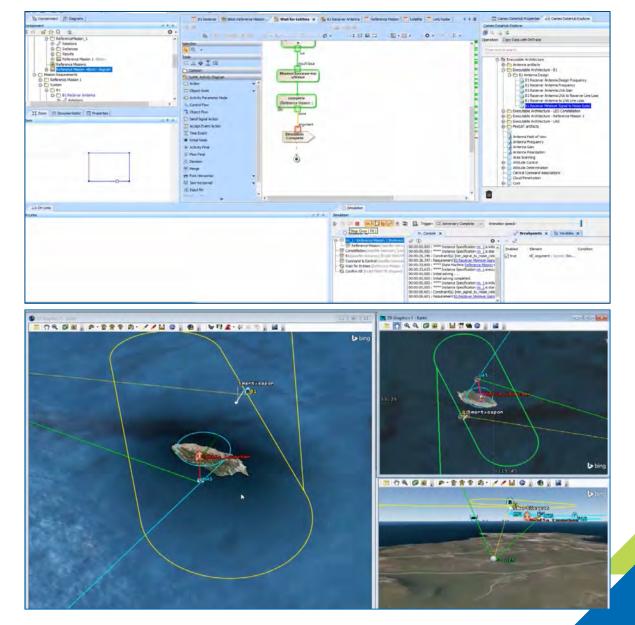

Approaches

- Convert selected features from MS&A tool to mission tool
- Integrate with DIS/HLA
- Make the mission simulation more capable
- Make the analysis-focused simulation more capable

STK and satellite database

SAIC.

Combined MS&A/Mission Tool: STK, Ansys Minerva, and Cameo

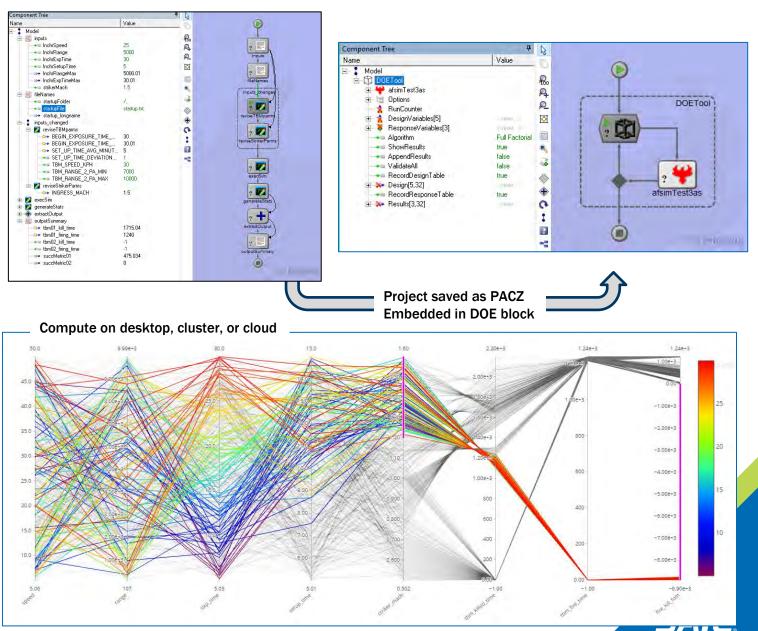

Use STK's mission capabilities with Cameo's behavior descriptions

- Based on Ansys Minerva
- Drive STK from the Cameo model
 - STK follows behaviors defined in SysML
 - Extract <u>mission</u> FOMs
 - Confirm requirements met based on a simulation

SAIC JADC2

video

Result: Industry-standard tools adapted to Mission Engineering



SAIC.

ModelCenter with PACZ

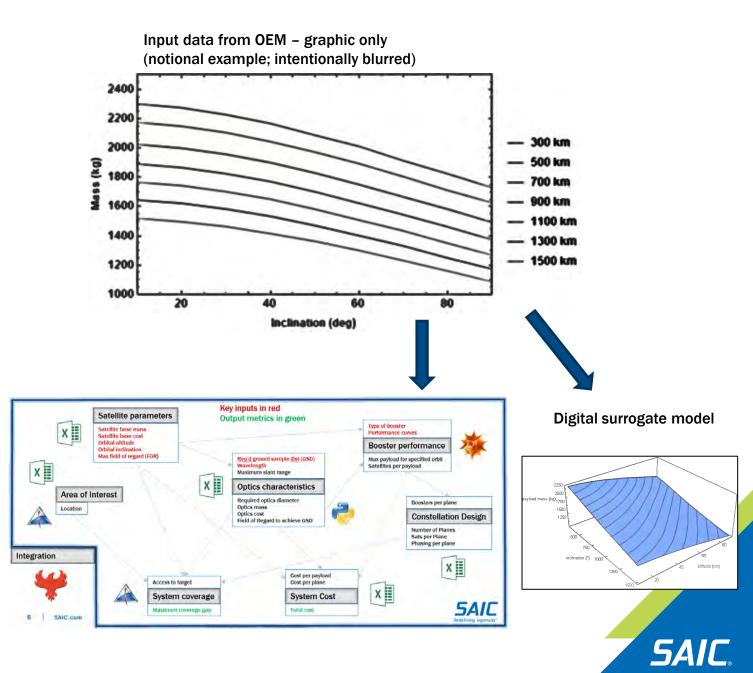
- Ensure ModelCenter workflows are widely applied in the DE/ME ecosystem
- Consider portability from the beginning of a ModelCenter project
 - Use relative file paths, file variables
 - Use AnalysisServer or ModelCenter Cloud
- Clearly define variables and artifacts
 - You might not be the next user
 - Makes it easier to verify
- Plan to create PACZ files
 - Test on multiple platforms
 - Access to Cameo or Rhapsody via ModelCenter MBSE

Result: Improved ability to combine and curate tools

Consideration 3: Applicability of Models Within Mission Engineering

Aspiration: Apply the same engineering models throughout the lifecycle

- Consistent with a single source of truth
- Fewer models to maintain
- Difficulties
 - Hard to use the same solution end-to-end
 - Model might be too detailed for a mission simulation
 - Might be too slow to execute
 - Might be hard or impossible to obtain
 - OEM-owned; proprietary; not deliverable; IP issues
 - Represents a system not in digital form
- Approaches
 - Derive, simplify, validate, curate with a process
 - Benchmark simplified models vs. more detailed
 - Create and verify surrogate models



SAIC

Surrogate Modeling

Rapid analysis requirement

- Include mass-on-orbit performance in an initial, integrated smallsat analysis
 - Very sparse documentation available from OEM
 - Parametric analysis; optimization
- Naïve method
 - Put a full launch simulation in the workflow"In the loop"
 - Slow, difficult, and uncertain to create and verify new models for a launch system
- First solution
 - Measure a table of points from OEM graphics
 - Create a surrogate model
 - Two days to code and verify
 - Embedded in a ModelCenter QuickWrap, .bat file

Better Solution for Surrogate Modeling

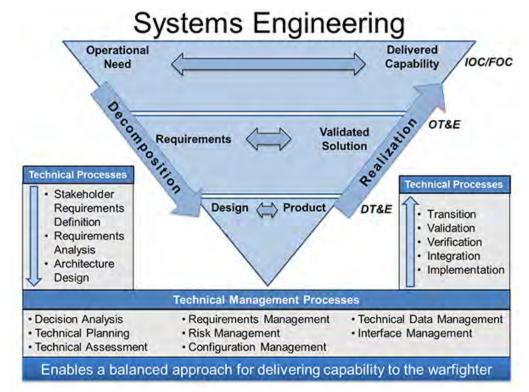
Create a surrogate from a data table

- Ingest into ModelCenter Explore with the Data Import Plug-in
- Apply the RSM Toolkit
 - Data Import Plug-In Step 5 of 5 - Define the variables: Variable Settings Variable definitions Design Name Input/Output Type Lower bound Upper bound variable × 300 \checkmark ✓ double 1500 altitude output ~ 10 \checkmark 100 inclination input double \checkmark 1021.62945714... 2302.18541225 mass input ✓ double altitude vs. mass vs. inclination inclinatiomass vs. inclination 2500 0, 1100 1500 1000 altitude 500 1200 -500 Surrogate modeling

example

- Took <u>less than two minutes</u> to ingest the data, evaluate, and place into ModelCenter
- Provides diagnostics of accuracy
- Enables redefining dependent variable

Consideration 4: Innovation in a Process-Driven Enterprise

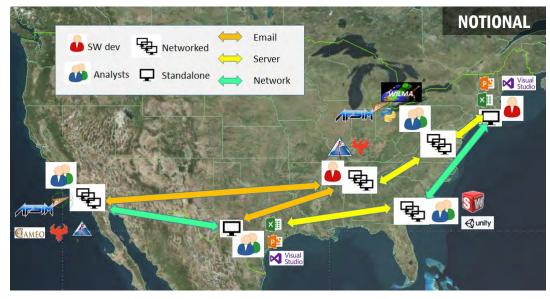

Aspiration: Encourage Mission Engineering innovation within the DE framework

Difficulties

- To reduce risk, we look only to proven SE tools and processes
- Sometimes have to use validated M&S tools even if hard to integrate or inferior
- Biased towards sunk costs and existing infrastructure

Approaches

- Use Agile processes where appropriate
- Make the SE process itself resilient
- Include innovation in contract scopes if possible
- Create pilot programs
- Give selected workers freedom to innovate



DAU Acquipedia: Systems Engineering Process

How do we enable innovation happen in a rigorous process?


SAIC

Innovation in Infrastructure: MS&A on Cloud

PREVIOUS/CURRENT STATE

- Solution Teams: M&S analysts, developers, operators
- Obstacles: Geography, orgs, time zones, networks, data transfer, ...
- Moving Parts: M&S software, analytics, software development, formats, ...
- Data Transfer: Email, server, network
- Integration: Slow, tedious, error-prone, bottlenecked
- Cost Assessment: Hard to estimate
- Security: Long ATO

OUTCOMES

- Eliminate M&S stovepipes
- More effort on solutions, not IT
- Faster solutions
- Stand up new work faster
- Teamwork without geographic and network barriers

SAIC.

• Common framework across multiple security levels

SOLUTION

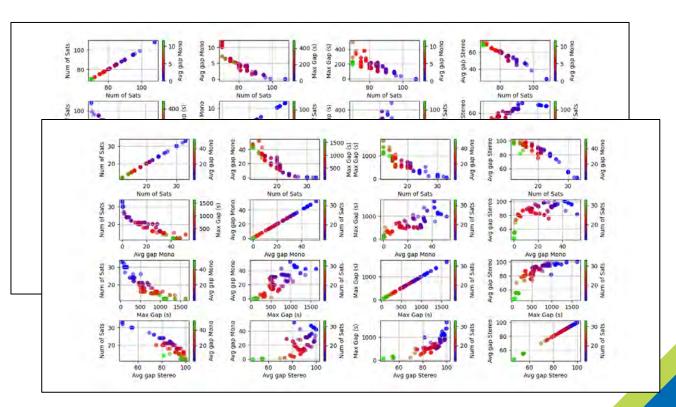
- Execute: M&S and analytic tools in one GovCloud environment
- Scale: Elastic cloud based
- Integrate with cloud based M&S
- Transfer data within cloud
- Access from anywhere and by anyone on project
- Define a reusable solution
- Visualize from M&S on cloud
- Security: Continuous ATO

Innovation for Production Speed: Temporary AWS Nodes

Objective

- Satellite constellation coverage trades in-house code
- Vary satellite orbit and viewing parameters
- Create Pareto fronts for analysis
- Example FOMs: average gap, max gap, and minimum number of satellites for for full coverage

Problem


- With standard employee computer would take 6-8 weeks based prior scenarios
- Compute cluster occupied with other work

Solution

- Used AWS GovCloud: 9 servers with 96 CPUs each
- Parallel processes
- Runtime decreased to 72 hours

Cost

- About \$6000 for AWS cores no recurrent cost Result
- Supported time critical analysis

For COTS, flexibility in licensing is key

Summary Modeling, Simulation, and Analysis in Mission Engineering at SAIC

- Supporting work of national significance
- Innovating to improve human interaction, integration, interoperability, curation, cost, and more
- Continuing to develop and innovate to support emerging customer needs

Looking for further connections with other innovative partners

MBSE Jobs: <u>https://jobs.saic.com/pages/mbse</u>

Digital Engineering: http://www.saic.com/digital-engineering

Contact Us: DigitalEngineering@saic.com

